
Here We Go Again: Why Is It Difficult for Developers to Learn
Another Programming Language?

Nischal Shrestha

NC State University

Raleigh, North Carolina

nshrest@ncsu.edu

Colton Botta

NC State University

Raleigh, North Carolina

cgbotta@ncsu.edu

Titus Barik

Microsoft

Redmond, Washington

titus.barik@microsoft.com

Chris Parnin

NC State University

Raleigh, North Carolina

cjparnin@ncsu.edu

ABSTRACT
Once a programmer knows one language, they can leverage con-

cepts and knowledge already learned, and easily pick up another

programming language. But is that always the case? To understand

if programmers have difficulty learning additional programming

languages, we conducted an empirical study of Stack Overflow ques-

tions across 18 different programming languages. We hypothesized

that previous knowledge could potentially interfere with learning

a new programming language. From our inspection of 450 Stack

Overflow questions, we found 276 instances of interference that

occurred due to faulty assumptions originating from knowledge

about a different language. To understand why these difficulties

occurred, we conducted semi-structured interviews with 16 profes-

sional programmers. The interviews revealed that programmers

make failed attempts to relate a new programming language with

what they already know. Our findings inform design implications

for technical authors, toolsmiths, and language designers, such as

designing documentation and automated tools that reduce interfer-

ence, anticipating uncommon language transitions during language

design, and welcoming programmers not just into a language, but

its entire ecosystem.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
• Software and its engineering→ Programming teams.

KEYWORDS
interference theory, learning, program comprehension, program-

ming environments, programming languages

ACM Reference Format:
Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. HereWe

Go Again: Why Is It Difficult for Developers to Learn Another Programming

Language?. In 42nd International Conference on Software Engineering (ICSE
’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3377811.3380352

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00

https://doi.org/10.1145/3377811.3380352

PRELUDE
Peter Norvig wrote a guide, “Python for Lisp Programmers” [48],

to teach Python from the perspective of Lisp. We interviewed Peter

regarding this transition and he described a few challenging aspects

of switching to Python, such as how lists are not treated as a linked

list and solutions where he previously used macros required re-

thinking. When asked about the general problem of switching

programming languages, he said:

Most research is on beginners learning languages. For experts,
it’s quite different and we don’t know that process. We just sort
of assume if you’re an expert you don’t need any help. But I
think that’s not true! I’ve only had a couple times when I had to
deal with C++ and I always felt like I was lost. It’s got all these
weird conventions going on. There’s no easy way to be an expert
at it and I’ve never found a good answer to that and never felt
confident in my C++.

Peter believes that learning new languages is difficult—even for

experts—despite their previous experience working with languages.

Is Peter right?

1 INTRODUCTION
Numerous stories on language transitions suggest that even ex-

perienced programmers have difficulty learning new languages.

For example, a Java programmer who transitioned to Kotlin [68]

reports that differences like reversed type notation and how classes

in Kotlin are final by default, made the transition less smooth than

expected: “if you think that you can learn Kotlin quickly because

you already know Java—you are wrong. Kotlin would throw you in

the deep end.” Similarly, a programmer experienced in C++ who

switched to Rust [15] found that Rust’s borrow checker, “forces

a programmer to think differently.” Transitions across radically

different languages are especially difficult. For example, a Java pro-

grammer switched to Haskell [25] and expressed that “the easy

things are often a bit harder to do in Haskell,” and another pro-

grammer [58] experienced in procedural languages warned that

“[lazy evaluation] can be a bit confusing to understand how it works

in practice especially if you’re still thinking like an imperative

programmer.” Even languages sharing the same runtime can be

problematic: “whenever I pick up CoffeeScript, I feel as if most

of my understanding of JavaScript suddenly vanishes into thin

air.” [50] From these stories, one common refrain occurs: previous

programming knowledge is sometimes less helpful than expected,

and can actively interfere with learning. This seems counterintu-

itive. Why can previous knowledge actually make learning harder

and not easier?

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin

In psychology and neuroscience, studies have shown that confu-

sion can occur when older information interacts with newer infor-

mation [12, 35, 36, 52, 53, 67]. To illustrate, suppose the bread aisle

of your favorite store was recently moved. You may reflexively start

walking towards the old location due to interference—when previous
knowledge disrupts recall of newly learned information. However,

if you recently saw that the impossible burger was added to the

frozen section (and not a separate health aisle), using knowledge

that frozen food can be found in the frozen section is an example

of facilitation [11]—when previous knowledge helps retrieval of

new information. In the same vein, when a Java programmer is

learning Kotlin, we postulate that their prior Java knowledge either

facilitates or interferes with learning. The knowledge that Java

is objected-oriented and uses static typing facilitates their learn-

ing as Kotlin shares similar properties. The knowledge that Java

classes are not final by default interferes with their learning be-

cause Kotlin classes are final by default. If previous programming

knowledge can be framed as a source of interference with new pro-

gramming language acquisition, interference theory can explain

why programming language learning can be difficult for experi-

enced programmers. And when previous programming knowledge

isn’t relevant, learning can also be difficult because this knowledge

doesn’t facilitate.

To investigate our hypothesis, we first looked for evidence that

programmers could have difficulty learning another language due

to interference from their previous knowledge. To this end, we

conducted an empirical study examining questions posted on a

popular question-and-answer site, Stack Overflow.
1
We analyzed

450 posts for 18 different programming languages and qualitatively

coded each post, characterizing posts in terms of whether or not

programmers made incorrect assumptions based on their previ-

ous programming knowledge. Then, to understand what learning

strategies programmers used when learning another language—and

why previous knowledge could interfere with this process—we in-

terviewed 16 professional programmers who had recently switched

to a new programming language.

We found that:

• Cross-language interference is a problem: 276 (61%) cross-

language posts on Stack Overflow contained incorrect as-

sumptions due to interference with previous language knowl-

edge.

• Based on our interviews, professional programmers primar-

ily learned new languages on their own, using an opportunis-

tic strategy that often involved relating the new language

to previous language knowledge; however, this results in

interference which harms their learning.

• Learning a new language involves breaking down old habits,

shifting one’s mindset, dealing with little-to-no mapping

to previous languages, searching for proper documentation,

and retooling in a new environment. All together, these

challenges make learning another language difficult.

2 METHODOLOGY
To explore how programmers learn a new language, and understand

their potential sources of confusion, we conducted amixed-methods

1
https://www.stackoverflow.com

study through an empirical investigation of Stack Overflow posts

across various languages and through semi-structured interviews.

We do so through the following research questions:

2.1 Research Questions
• RQ1: Does cross-language interference occur? We ex-

amined questions programmers had about programming

languages on Stack Overflow for evidence of interference

with previous programming knowledge.

• RQ2:Howdo experienced programmers learnnew lan-
guages?To gain a better understanding ofwhy cross-language
interference occurs, we interviewed professional program-

mers on how they learn new languages.

• RQ3: What do experienced programmers find confus-
ing in new languages? To examine the ways in which pro-

grammers mix a new language with their previous knowl-

edge, we asked programmers about obstacles they faced, and

surprises they encountered in their new languages.

2.2 Phase I: Study Design for Stack Overflow
To answer RQ1, we conducted a study using Stack Overflow posts.

Data collection. To gather Stack Overflow questions, we used

the SOTorrent [13] data source from the 2019 MSR Mining Chal-

lenge. We queried 26 programming languages used previously by

Erik [17] and Waren [42] in their investigation of popular language

migrations, based on Google search keywords and Github reposito-

ries. We gathered Stack Overflow questions for each <language A,
language B> pair. To keep the analysis tractable [43], we consid-

ered only the association between the two languages, and not the

direction of the possible interference. We used a stop-rule criteria

to cover over 95% of total posts, which resulted in 15 out of the 26

language pairs shown in Table 2. The materials for the study are

available online.
2

Query criteria. We used BigQuery
3
to query the SOTorrent

database and used the following filtering criteria to capture poten-

tial posts where the programmers are asking questions about a new

language (target) coming from a previous language (source):

(1) The question is tagged with both languages, or

(2) The question is tagged with the source language but contains

the text of the target language in the title or body, vice-versa.

Analysis. To understand whether or not cross-language inter-

ference occurs, we performed a manual inspection of Stack Over-

flow posts (Table 2). We inspected a random sample of 30 posts for

each pair to keep categorization tractable, as done in Barik et al.

[14]. We manually excluded posts that did not make any explicit

connection between the languages of each pair, sampling another

random post to replace it as necessary. Because the inclusion and

exclusion criteria can have multiple interpretations, the first two

coauthors labelled a random sample of 30 posts. This labelling had

100% agreement between the coauthors, and suggests a clear under-

standing of how to categorize posts. The two coauthors proceeded

2
https://go.ncsu.edu/cross-lang-study

3
https://cloud.google.com/bigquery/

Why Is It Difficult for Developers to Learn Another Programming Language? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Participants

ID Exp1 Domain Recent Transition

P1 15 Compilers C# ⇒ Python⇒ C++

P2 9 Data Science Python ⇒ Julia

P3 18 Information Sciences Python ⇒ PHP

P4 15 Neuroscience R ⇒ Python

P5 10 Security C++ ⇒ TypeScript

P6 20 Cloud Services C# ⇒ TypeScript

P7 6 Cloud Services C# ⇒ Python

P8 10 Web Platform C# ⇒ JavaScript

P9 31 Data Science C# ⇒ JavaScript ⇒ Scala

P10 8 Business Applications C# ⇒ Rust

P11 12 Web Platform C# ⇒ Ruby

P12 10 Data Science Python ⇒ SAS

P13 6 Software Engineering C++ ⇒ JavaScript

P14 10 Data Science R ⇒ Python

P15 20 Software Engineering C# ⇒ Swift

P16 5 Data Science R ⇒ Python

1
Years of self-reported programming experience.

to label the rest of the Stack Overflow posts using the following

classifications:

• Correct: The post makes a connection to a previous program-

ming languagewith correct assumptions regarding the target

language as revealed by the accepted answer, or

• Incorrect: The post makes a connection to a previous pro-

gramming language with incorrect assumptions regarding

the target language as revealed by the accepted answer.

Next, we calculated inter-rater reliability (IRR) between the two

coauthors (Cohen’s κ = 0.89), and obtained “substantial” agree-

ment [40]. We discussed disagreements on whether a post was

correct or incorrect: if there was still disagreement, it was recon-

ciled by the first author. Finally, we calculated the percentage of

correct and incorrect posts. We used instances of correct and incor-

rect assumptions as evidence of cross-language interference and

facilitation.

2.3 Phase II: Study Design for Interviews with
Professional Programmers

To answer RQ2 and RQ3, we conducted semi-structured interviews

with professional programmers.

Participants. We used purposive sampling [65] to recruit 16

professional programmers who were learning a new programming

language within the past 6 months (Table 1); these participants were

still early in their learning process and working through their initial

stumbling blocks in the new language. The participants (12 male, 4

female, self-reported) were from large software, technology, and

data analytics companies with years of programming experience

ranging from 5 to 31 years (µ = 12.8, sd = 6.6). There were a total of

14 unique language transitions. Before the interview, participants

completed a background questionnaire asking them about their

previous languages and an obstacle they have experienced while

adapting to the new language.

Protocol. We conducted semi-structured interviews either on-

site or remotely, within 60 minute time blocks. Two of the authors

conducted and recorded the interviews separately. All sessions were

conducted with a single observer and a single programmer. We used

the following structure for questions: 1) participant background, 2)

first steps, 3) obstacles, 4) learning process, and 5) general strategies.

The background information from the questionnaire was used to

tailor the questions for the participants. The semi-structured inter-

view format allowed the flexibility to ask questions impromptu and

dig deeper into more specific obstacles. The recordings were later

transcribed by the first author for analysis.

Analysis. RQ2: How do experienced programmers learn new lan-
guages? To answer RQ2, we conducted inductive thematic anal-

ysis [22] on the interview transcripts over multiple phases: tran-

scribing interviews, generating open codes by labelling notable

recurring statements made by the participants, identifying rela-

tionships between the codes, and organizing them into meaningful

themes.

RQ3: What do experienced programmers find confusing in new
languages? To understand how programmers confuse language

concepts, we selected themes from our analysis that highlighted

interference due to previous programming knowledge.

3 RESULTS
3.1 RQ1: Does cross-language interference

occur?
Cross-language interference occurs on Stack Overflow across var-

ious language pairs. We found a total of 276 instances of incor-

rect assumptions (Table 2), which is around 61% of the 450 posts

inspected. There were a total of 174 posts with correctly stated

assumptions, which is only around 39% of the total posts. It’s im-

portant to note that this provides evidence of interference occurring

but does not imply programmers have incorrect assumptions 61%

of the time. The <Kotlin, Java> pair had the highest number

of posts with incorrect assumptions, which reflects the Java pro-

grammer’s confusion mentioned in Section 1. The next two pairs,

<C#, Visual Basic> and <Scala, Java>, also contained a high

number of incorrect assumptions. However, there were other pairs

like <Python, C++>, <Java, C#>, and <PHP, Java>, which had

a more even distribution of posts with correct and incorrect as-

sumptions; this suggests easier transitions between the languages.

While reviewing the 450 Stack Overflow posts, we encountered

instances where programming languages behaved in surprising

ways for programmers. We highlight three examples, two of which

involved interference between syntax and concepts, and one which

involved facilitation—making it easier to use type inference.

Interference: R⇒ Python4

An R programmer is now using Python and its data processing

library, Pandas. They are unable to successfully relate their

previous knowledge about subsetting, in R, to Python: “I’m

seriously confused. Maybe I’m thinking too much in R terms

and can’t wrap my head around what’s going on in Python.”

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin

Table 2: Posts by Language Pair

Correct4

Language Pair1 Posts2 % Accepted3 n %

<C, C++> 30863 65% 9 30%

<C#, Visual Basic> 11522 62% 8 27%

<Objective-C, Swift> 9416 50% 10 33%

<Python, C++> 6763 51% 15 50%

<Java, C#> 6748 59% 16 53%

<Scala, Java> 6622 55% 8 27%

<PHP, Java> 6152 46% 16 53%

<R, Python> 2824 49% 12 40%

<Kotlin, Java> 2565 53% 6 20%

<Matlab, Python> 2407 53% 11 37%

<Node, PHP> 2077 40% 14 47%

<Ruby, Python> 1314 65% 14 47%

<Perl, Python> 1152 67% 13 43%

<Lua, C++> 1143 63% 12 40%

<Clojure, Java> 1098 68% 10 33%

1
The pair of programming languages.

2
Total number of questions where the two languages are tagged or

referenced in body.

3
Percentage of questions that have accepted answers.

4
Total posts (out of 30) classified as having correct assumptions

formed from prior language knowledge.

They present the R expression they want to translate, as

well as several attempted translations in Python:

R
data[data$x > value, y] <- 1
Python
data['y'][data['x'] > value] = 1

Several concepts in R interfered, but we will highlight the

most significant: Python prevents assignment to copies of

dataframes. In this case, the indexing operation data[‘y’]
returns a copy of the dataframe and setting the value with

[data[‘y’] > value] = 1 will not work as the R program-

mer expects. The knowledge that the equivalent R expression

will set the value of 1 without any warnings interferes with

Python’s warning.

Interference: PHP⇒ JavaScript5

A PHP programmer who has switched to programming in

JavaScript asks how to store transient information (sessions),

such as application state about a user. Typically, PHP uses

server-side session variables ($_SESSION) for this purpose.
While related concepts, such as local storage and browser-

based sessions exist, the programmer is warned that sessions

4
https://stackoverflow.com/questions/30923882/pandas-logical-indexing-on-a-

single-column-of-a-dataframe-to-assign-values

cannot be safely and securely stored directly on the client—

the programmer’s knowledge about server-side sessions leads

to a faulty assumption about their applicability in other pro-

gramming contexts.

Facilitation: Java⇒ Kotlin6

A Java developer is learning Kotlin. They ask if the following

Kotlin expression can be simplified:

val boundsBuilder: LatLngBounds.Builder =

LatLngBounds.Builder()↪→

The developer suspects their declaration is more verbose than

it should be, given their knowledge of local variable type infer-

ence in Java. They assume the declaration can be simplified:

val boundsBuilder = LatLngBounds.Builder()

This is an example of facilitation—the accepted answer con-

firms that the developer can simplify the expression because

Kotlin supports type inference, allowing for the explicit type

declaration to be removed.

These examples illustrate how previous knowledge of language

syntax and concepts interact with knowledge learned in a new

language. In some cases, this results in interference, which harms a

programmer’s ability to grasp new syntax and concepts in the new

language. In other cases, this results in facilitation, which helps

programmers make meaningful connections to previous languages

and helps them learn the new language.

Cross-language interference occurs across various language

transitions on Stack Overflow posts. We found that 61% of the

450 posts contained incorrect assumptions about the target

language, and only 39% contained correct assumptions.

3.2 RQ2: How do experienced programmers
learn new languages?

We present the themes on how experienced programmers learn

new languages. A summary of the themes is listed in Table 3.

3.2.1 Programmers learned languages on their own. Programmers

who switched teams lacked formal training for the new language

and its associated technology stack, leaving learning to themselves.

For example, when P1 switched fromC# to Python for a new project,

there wasn’t any training involved and the on-boarding process

was, “hey we want to get exposed to the Python world, go get

started!” Although some programmers were given training initially

on the project, “realistically for learning the new language [they]

were pretty much on [their] own” (P7). This forced programmers to

watch “language tutorial videos on Pluralsight”
7
(P5) or read online

documentation. Some programmers “got initial tips from some

folks from the team on what’s what” (P6), and when running into

complex issues “reached out to the group and said has somebody

else hit this before?” (P1).

5
https://stackoverflow.com/questions/47137666/which-variable-is-used-to-store-

angular-session-value-same-as-php-session-vari

6
https://stackoverflow.com/questions/38131655/operator-new-in-kotlin-syntax

7
https://www.pluralsight.com

Why Is It Difficult for Developers to Learn Another Programming Language? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Learning Strategies and Language Interference Themes

Learning Strategies
Theme Description Representative Examples Participants

1

Learning on their own
(Section 3.2.1)

Programmers lacked formal

training for the new language

and its associated technology

stack, leaving learning to them-

selves.

“We didn’t have a procedure for people getting up and

running.”

“‘I just do everything ad-hoc!”

“I got initial tips from some folks from the team on what’s

what.”

P1, P2, P5, P6,

P7, P13, P14,

P15, P16

Just-in-time learning
(Section 3.2.2)

Programmers focused on only

learning features as needed.

“There’s probably like a content cheat sheet.”

“I didn’t learn typescript step-by-step.”

“Step one for me is always find and read other people’s

code.”

P1, P2, P3, P5,

P9, P14, P15

Relating new language
to previous languages
(Section 3.2.3)

Programmers tried to map fea-

tures of the new language to

their previous languages.

“I loosely [take] ideas from working in another language.”

“I would try to find the counterpart of C++ in React.”

“If you can compare them side by side and find their simi-

larities you’re more than halfway there.”

P1, P2, P9, P12,

P13, P14, P15

Language Interference
Theme Description Representative Examples Participants

2

Old habits die hard
(Section 3.3.1)

Programmers had to constantly

suppress old habits from previ-

ous languages.

“I’m typing a[1] thinking that it’s a[0].”
“I still type the type first before the variable.”

“I’m gonna make it an object for this, no don’t do that!”

P2, P3, P4, P6,

P9, P15

Mindshifts when
switching paradigms
(Section 3.3.2)

Sometimes programmers wres-

tled with larger differences that

required fundamental shifts in

mindsets, or “mindshifts.”

“All my assumptions were thrown out the window.”

“I had to rethink the problem and re-implement it.”

“There are lots of events and promises all these things

makes it really hard to debug.”

P2, P5, P6, P9,

P10, P13, P15

Little to no mapping
with previous languages
(Section 3.3.3)

Programmers had a harder

time learning the new language

when there was little to no map-

ping of features to previous lan-

guages.

“There’s a very alien concept in Rust that is the borrow

checker.”

“I’ve never had a language with traits before.”

“I did not work with concepts like virtual DOM, shadow

DOM before.”

P2, P5, P9, P10,

P11, P15

Searching for terms and
documentation is hard
(Section 3.3.4)

Programmers found it difficult

to search for information about

the language and its associated

technologies.

“You don’t even know what exists, what to even look for.”

“Scala is not that common. Some of it required a little deeper

digging.”

“They have their own convention, TypeScript has its own

convention, JavaScript has its own convention.”

P1, P2, P4, P8,

P9, P11, P12

Retooling is a
challenging first step
(Section 3.3.5)

Programmers faced difficulty re-

tooling themselves in the envi-

ronment of the new language.

“I was using Visual Studio to debug C# code and now it’s

gdb to debug C++ code.”

“In Xcode, build targets aren’t ‘Universal’ in definition like

.NET.”

“The problem is IntelliJ is aimed at the Java developer and

I’m using SBT which is from the Scala world.”

P1, P2, P9, P12,

P15

1
Participants who used a similar learning strategy.

2
Participants who experienced the particular language interference theme.

3.2.2 Just-in-time learning is a dominant strategy. To learn new

languages, every programmer we interviewed used just-in-time
learning [21], an opportunistic strategy focused on only learning

features as needed. Given time constraints, programmers made

use of immediately available resources like online documentation,

video tutorials, online searches, and available experts. Traditional

resources like programming language books were only used as a

reference, since programmers “just don’t have time to do that” (P5).

Programmers were primarily concerned with completing tasks in a

reasonable time and “figuring out how to not burn tons of time on

a single problem” (P1). Quicker resources, like cheat sheets, were

preferred for language transitions. For example, the first thing P2

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin

did was to make use of cheat sheets [55] to help them transition

from Python to Julia. P15 was also a fan of cheat sheets:

It seems like if you were going from one framework to
another, from one technology stack to another—even if
you’re not going from A to B, you’re just starting off on
B—there’s probably a content cheat sheet that every dev
needs to know. (P15)

3.2.3 Programmers related the new language to previous languages.
To help accelerate the learning process, programmers generally

tried to relate the new language to their previous languages. Pro-

grammers started by “loosely taking ideas from working in another

language” (P14) or looking at existing code because “it’s already

probably been written and it’s out there somewhere or at least

something close to it” (P1). While this learning strategy was useful

for bootstrapping, some programmers started from scratch. For

example, when moving from C# to Ruby, P11 described “trying to

be very conservative and mindful and trying not to map anything

over, but just treating everything as something brand new.” Simi-

larly, P12 explained that they did not try to map things from Python

when learning SAS “mostly because the syntax was so new that

every time [they] tried to do anything, [they] would have to go and

google the syntax.” P10 expressed a similar problem when learning

about managing memory in Rust after years of using C#: “there

wasn’t a clean way for me to just get there. I had to go and learn that

stuff from scratch.” These examples illustrate that programmers

typically reuse knowledge—if possible—but sometimes avoid doing

so when it’s more troublesome.

Programmers use an opportunistic learning strategy, relating

syntax and concepts of the new language with their previous

language. This offers expediency but causes interference when

major differences exist between the two languages.

3.3 RQ3: What do experienced programmers
find confusing in new languages?

We present the themes explaining how programmers confuse lan-

guage concepts. A summary of these themes is listed in Table 3.

3.3.1 Old habits die hard. Programmers had to constantly sup-

press old habits acquired from previous languages. For example,

P3—who was used to Python—had trouble adapting to block de-

limiters in PHP, where “it’s near-impossible to figure out exactly

which opening brace you’re closing once your HTML/PHP gets

to any complexity at all.” Similarly, P15 realized that “in Swift, the

open curly bracket needs to be on the initial line of the method

declaration and if you put it on the next line the method may not

execute in an expected fashion.” There were minor but frustrat-

ing difference like 0 versus 1 indexing for lists in languages such

as Python and R. P4 described their frustration in “typing a[1]
thinking that it’s a[0], and then wasting 5 minutes like a complete

fool not understanding why nothing makes sense” (P4). Program-

mers are able to resolve these small differences, but it still causes

interference at the onset of learning a new language.

3.3.2 Mindshifts are required when switching paradigms. Some lan-

guage transitions required fundamental shifts in mindsets, or “mind-

shifts” [10]. For example, when P2 transitioned from Python to Julia,

they were constantly trying to make an object and realizing that

“there’s no objects, there’s only structs!” With Julia, they needed to

write more functional code, a shift from the object-oriented pro-

gramming that they were used to in Python: “it was just needing

to shift that and realize I’m never gonna write ‘something-dot-

something-else’ ever or rarely.” For P10, they had to completely

rethink the problems they would have normally solved in C# be-

cause of Rust’s unique ownership feature for memory safety:

A really fascinating thing about learning Rust was that
when I went and started to do these things—things that
I would reach for in C# that I knew would work—Rust
wouldn’t allow it and as a result I had to rethink the
problem and re-implement it in a way where the owner-
ship characteristics of that algorithm were very explicit.
(P10)

Another big paradigm shift occurred for P5, P6 and P13—all tran-

sitioning from imperative or object-oriented coding to event-driven

and asynchronous coding—forcing them to think differently. The

programmers had to learn brand new concepts in JavaScript like

asynchronous programming or “shadow and virtual DOMs” (P13).

P6 described how it was difficult making sense of asynchronous

code because “you got a whole bunch of ‘async/awaitmode’ work-

ing in your mind and you have to convert it.” To make matters

worse, “the most confusing part is there are a couple of ways to do

asynchronous programming, with observables or promises” (P13).

For P5, whose background was in C++, the front-end coding in

TypeScript was a big challenge because “for the back-end, the code

I think is more straightforward. You have the logic and most likely

you know single places you’ll handle it. It’s not like the UI” (P5).

Here, the interference issues aren’t due to any particular syntax or

concept but the way one solves problems in the new language.

3.3.3 Learning a language is difficult when there is little to no map-
ping with previous languages. Programmers had a harder time learn-

ing the new language when there was little to no mapping of fea-

tures to previous languages. For example, P12 could not make sense

of some fundamental programming language features of SAS that

were clear in Python, like statements versus method parameters.

They could not understand “why some things are statements that

affect a procedure, but aren’t parameters” and were “still confused

about the overall syntax and what is or isn’t a statement”—even

after having worked in the language for a few weeks. A drastic

example was P5, who experienced a big transition fromC++ to Type-

Script, resulting in tech shock: “Everything is different! Not just

the programming language—the IDE, source control, everything is

different.” P13, who underwent a similar language transition, found

that concepts were challenging in JavaScript because they “could

not equate it back to C++.” Due to limited mapping of features

to previous languages, programmers could not make full use of

facilitation to learn the new language.

In the extreme case, programmers were forced to learn a com-

pletely foreign syntax or concept, in particular, when it was an

essential built-in feature of the new language. For example, P9 had

difficulty learning traits in Scala because they “never had a language

Why Is It Difficult for Developers to Learn Another Programming Language? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

with traits before. Traits have a default implementation and under-

standing what would be performant and what wouldn’t—and when

to use what—that was the tricky part.” P7 learned that for Python,

“the major difference is the multiple inheritance thing, that Python

inherits from the C++ world, which supports multiple inheritance.

In C# you can’t do that.” In another case, the difficulty was due to

differences in memory management, for example, when P10—who

previously used C#—was learning Rust:

There’s a very alien concept in Rust that is the borrow
checker, which is the concept of having the compiler
verify more things, and the way it does it is somewhat
esoteric. That’s very alien, and that’s something that
I think is really cool but it’s also very rough at the
moment and so that’s kind of something that’s been the
biggest struggle when trying to learn Rust. (P10)

Even within the same context, such as data analysis or mobile

applications, the lack of mapping caused a lot of confusion. For

example, P14, who switched from one data analysis language (R) to

another (Python/Pandas), could not find an immediate equivalent

for R’s spread and gather functions: “Pandas already had the

functionality but it was more hidden using drop level and unstack.

These were really hard to understand in Pandas—it was some pretty

weird stuff.” Similarly, P15, who switched from C# to Swift, was

very surprised to learn how the user interface code and its graphical

layout view in Xcode were connected: “Knowing that you can’t

interact with a UI object straight out of the box from the code is

very important. Once you draw the referencing outlet connection

between View and Controller you can trigger methods and get/set
properties as you’d expect in the .NET world.”

3.3.4 Searching for the right terminology and code examples is dif-
ficult. We found that moving to a new programming language

presents a selection barrier [39], making it difficult to search for

information about the language and its associated technologies. Pro-

grammers recounted trouble acquiring the vocabulary even before

performing the search. For P12, the names for the same structures in

Python/Pandas were slightly different than SAS where a “dataframe

is data set, a row is an observation, a column is a variable.” When

they tried to plot with SAS, they “don’t know what the name of the

proc for plotting in SAS is so [they] have to start looking that up

first, then find documentation for a couple different ones, then have

to figure out how to make them work.” On the one hand, “it’s the

breadth of the libraries that usually get you, you don’t even know

what exists, what to even look for to see if something is already

there” (P1). On the other hand, insufficient search results provided

little to no facilitation. For example, P4 had difficulty searching

information for a Python library called seaborn—compared to the

equivalent R library ggplot—because “it is just less documented.

For ggplot, if you google anything, you get like 100 hits, and the

top ones are bound to be good due to Google selection of results.

With seaborn, you get like 10 hits.”

Even when programmers found documentation and code exam-

ples, they were either incomplete or lacking in detail. For example,

P8 expressed a frustration regarding testing libraries in JavaScript

because “they have their own convention, TypeScript has its own

convention, JavaScript has its own convention, it is actually mixing

everything!” This was especially problematic when conventions

found online weren’t always the same ones used by the specific

team: “There’s a lot of conventions around the language. In C++,

the styles can change a bunch from team to team” (P1). For some

languages, the documentation was either lacking in quality or was

completely missing. For example, P2 was frustrated with the Julia

documentation because “it was so useless for figuring out the im-

ports.” Similarly, P12 expressed that the SAS documentation “only

tells you how to copy-paste and run a simple program, leaving you

completely mystified as to how the execution and control flow of

a SAS program works.” This lack of depth can lead to frustrating

experiences for programmers when they had better documentation

in previous languages, such as P15: “Xcode documentation samples

were pretty good enough to where they would run. But the docu-

mentation, MSDN, and the available samples for creating Microsoft

platform-based applications were tenfold deeper and richer and

easier for to use.”

3.3.5 Retooling is a necessary and challenging first step. Finally,
before programming in the new language, programmers faced dif-

ficulty retooling themselves in a new environment. This typically

involved adapting to the discrepancies of the new integrated de-

velopment environment (IDE) for programming in the language.

Although programmers were able to adapt to basic features of IDEs

(facilitation), there was interference when some aspects of the IDE

differed from their previous IDEs. For example, P15 discovered that

in Xcode “build targets aren’t ‘Universal’ in definition (like .NET)

and when terminologies are shared across platforms but don’t im-

plement the same notion, you’re lost for days!” Interestingly, for P9

there was interference when they tried building their Scala project

in IntelliJ because the IDE attempted to support Scala, but continued

presenting dialogs in the previous language:

Part of the problem is IntelliJ is aimed at the Java devel-
oper and I’m using SBT, which is from the Scala world.
And it’s sort of importing the SBT into the concepts in
the IDE of IntelliJ. So I’m looking at dialogs that are
all about Java and which JDK and that doesn’t map to
what I wrote in the declarative SBT language. (P9)

Other concerns regarded either a lack of IDE features or learn-

ing new features that were distracting. P2 had been “spoiled with

Python and PyCharm” and found it very difficult to find proper

IDE support for Julia; they just wanted “an IDE that does syntax

highlighting and IntelliSense-like autocompletion.” P1 found that

learning a new feature—like debuggers—effectively halts a pro-

grammer’s progress on actual tasks and are distracting “because

you’re learning and debugging at the same time as opposed to just

debugging once you’re fluent.”

However, sometimes the transition to new tools in the language

also benefited programmers. For example, P5 found it a lot easier

moving from MSBuild (C++) to Gulp (JavaScript), which allowed

fast build cycles when developing TypeScript applications. In par-

ticular, the DevOps pipeline helped them make progress much

quicker:

I think right now the build system for us, I think it’s
better since now we are using DevOps—a pipeline to
build the code. It’s very easy for us to even schedule the
private build and also it’s very easy for us to quickly

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin

get new things, check in the code, test it, and even build
things on top of it. (P5)

Programmers confuse a new language’s syntax and concepts

with previous languages, leading to a number of issues like

trying to suppress old habits, wrestling with mapping issues,

struggling to find and use proper documentation, retooling

and shifting one’s mindset for new paradigms.

4 LIMITATIONS
Our mixed-methods approach of investigating Stack Overflow and

conducting interviews introduces certain trade-offs and limitations.

The choice of sampling technique in our Stack Overflow anal-

ysis has several trade-offs [45]. Because the sampling approach

is non-probabilistic, it does not allow for sample-to-population,

or statistical generalization. Rather, our approach targets diversity

(rather than representativeness) in order to identify evidence of

interference across many different programming languages.

We used correct and incorrect assumptions as a proxy construct

for facilitation and interference. While this approach provides us

with a useful, high-level characterization of the Stack Overflow

posts, there are potentially additional insights that we could learn

had we performed a more intricate qualitative coding technique,

such as open coding. The trade-off for doing so is that open cod-

ing is significantly more costly to execute. Instead, we conducted

semi-structured interviews with experienced programmers to delve

deeper into cross-language interference.

The posts we examined on Stack Overflow as well as our inter-

views do not completely cover the set of all language transitions, as

the full permutation space of language transitions is intractable. Our

approach attempts to cover language transitions that are most likely

to occur in practice. Consequently, there may be some interference

issues that our study was not able to identify.

Finally, we acknowledge that qualitative research, however rig-

orously conducted, involves not only the qualitative data under

investigation but also a level of subjectivity and interpretation on

the part of the researcher as they frame and synthesize the results

of their inquiry. To support interpretive validity, we followed the

guidelines set by Carlson [24] and performed a single-event mem-

ber check with our results. Six participants who replied agreed with

our presentation of the results and only wanted minor changes

to their quotations. Additionally, we emphasize that interference

theory is only one of many possible lenses through which we can

organize and present our findings. Other theories, such as notional
machines, have also been used to identify and explain programming

conceptions [18, 29, 30].

5 RELATEDWORK
Novice misconceptions. Programmers often have misconceptions

while learning new programming languages, but most studies have

focused on novices. Swidan et al. [64] proposes “intervention meth-

ods to counter those misconceptions as early as possible,” but

this work is primarily targeted to novices. Similarly, Kaczmar-

czyk et al. [37] has examined misconceptions and how to mea-

sure them for novices. In contrast, the novelty of our work is to-

wards experienced programmerswho need to switch languages [44],

and requires methods of learning distinct from those designed for

novices [32, 38, 63]. Our study investigated switching languages

for experienced programmers and took the first steps in examin-

ing how knowledge of previous languages interfere when learning

another language.

Programming language transitions. There are a few studies on

transitions between programming languages. Scholtz and Wieden-

beck [57] studied experienced Pascal or C programmers writing a

program in a new language, Icon, and found that they were strongly

influenced by their knowledge of what would be appropriate in

previous languages. Wu and Anderson [70] conducted a similar

study where programmers who had experience in Lisp, Pascal and

Prolog wrote solutions to programming problems and found that

solutions written in one language facilitated learning in another lan-

guage. Uesbeck and Stefik [66] studied the effect of using multiple

languages in a controlled study, where participants implemented

several variations of database queries: some variants involving the

same language, while others mixing SQL and Java. While the re-

sults were inconclusive, the authors suggest that the methodology

could be effective for studying the productivity costs associated

with mixing languages. We examined empirical evidence and con-

ducted interviews to understand the transition from one language

to the next for various contexts. We also investigated how program-

mers confuse two different languages using the lens of interference

theory [67].

There have been fewer studies on interventions for learning

new languages. Bower and McIver [20] explored a new teaching

approach called Continual And Explicit Comparison (CAEC) to

teach Java, using facilitation, to students who have knowledge of

C++. They found that students benefited from the continual com-

parison of C++ concepts to Java. Shrestha et al. [60] used a similar

technique using a tool called Transfer Tutor to teach R from the

perspective of Python; programmers who used the tool found the

comparisons between the languages useful. These intervention

techniques might benefit programmers who learn new languages

from the perspective of a known neighboring language, but there

are a number studies on larger transitions—for example, from pro-

cedural or imperative to object-oriented languages [10, 28, 46, 47].

These studies have shown professional programmers experience

greater interference as they have to make fundamental shifts or

“mindshifts,” which might require further support. In this study, we

have uncovered interference issues in the modern context and ex-

amined numerous language transitions. We also found other issues

that have not been explored like dealing with little to no mapping

of language features (Section 3.3.3) and retooling (Section 3.3.5),

which have implications for future tools and techniques.

Programming knowledge. Knowledge structures have been pro-

posed for how programmers encode semantic [59] and domain

information [23] about a program as well as prime structures [41],
that include elements of syntax, control-flow and data-flow [51] of

the program. These knowledge structures [56] have been formal-

ized and referred to as programming plans. Programming plans act

like schemas that are first instantiated and then its slots are filled

with concrete values as a programmer builds an understanding of

the code [62]. Plans may help programmers fill in the “gaps” when

trying to understand code.

Why Is It Difficult for Developers to Learn Another Programming Language? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Gilmore and Green [31] suggested that programming plans may

not generalize across different languages, and that plans cannot

represent the underlying deep structure of programs. Bellamy and

Gilmore [16] examined the protocols generated from experts in

different languages as they created programs. Using two different

models of programming plans, they found neither model was well

supported by protocols; further, different programming language

experts generated different types of representations. We believe our

results provide further insight as to why plans may not generalize

across languages. For example, we found programmers tend to re-

late a new language to previous languages (Section 3.2.3), which

suggests an attempt to reuse previous programming plans as a

bootstrapping strategy. However, due to interference issues, the

previous plans might either need significant modifications (Sec-

tion 3.3.3) or be replaced entirely (Section 3.3.2), depending on how

closely related the two languages are.

6 DISCUSSION AND DESIGN IMPLICATIONS
Our findings demonstrate that interference is not an isolated phe-

nomenon; indeed, in Stack Overflow, instances of interference are

found across all of the programming languages we investigated.

Furthermore, in our interviews, participants reported that inter-

ference arises routinely as they learn a new language—for exam-

ple, from having to suppress old habits from previous languages

(Section 3.3.1) or having to “rethink the program” (P10) due to a

substantially different paradigm (Section 3.3.2 and Section 3.3.3).

As opposed to traditional classroom environments where one

learns “step-by-step” (P5), experienced programmers in our study

used opportunistic strategies to learn essentially “on [their] own”

(P7) or “learning through work” (P13), for example, using online

resources or asking teammates (Section 3.2.2) [21]. Unfortunately,

these informal approaches to learning sometimes result in an incom-

plete lens for how the language works, resulting in “unintentional

bugs” (P5) and other difficult-to-diagnose problems in the code

when something doesn’t work as expected.

In the remainder of this section, we present design implications

for technical authors, toolsmiths, and programming language de-

signers that can help reduce some of these interference difficulties

for programmers.

Implication I—Design documentation that reduces interfer-
ence and supports knowledge transfer. Programmers in our

study desired more accessible resources that leveraged the program-

ming knowledge they already have (Section 3.2.2 and Section 3.2.3).

Such resources included “cheat sheets,” which present code snip-

pets that map their familiar language to their new language (P2)

and relate concepts they already know “from working in another

language” (P14), to the new language tutorials, and even resort-

ing to “reading other people’s code” (P3, P15) to understand the

programming language idioms.

Our findings suggest that resources that teach languages through

relating a new language to a known language are more useful

and accessible to programmers than resources that present the

new programming language in isolation. Several books [26, 34, 49,

72], blogs [5, 7], language documentation [4, 6, 69], and training

courses [2, 8] embody this pedagogical strategy.

However, these resources—while useful—are essentially hand-

crafted through the authors’ intuitions about what misconceptions

the programmer might have, and not necessarily the ones that

programmers actually have. While misconceptions about novice

programmers are readily found in the literature [27, 37, 54], mis-

conceptions experienced programmers have are comparatively un-

derstudied. Shrestha and Parnin [61] presented three possible in-

strument designs which can be used for discovering and validating

misconceptions when switching languages for experienced pro-

grammers. Such research is needed to make learning resources

more effective and relevant to experienced programmers.

Implication II—Build automated tools to provide on-demand
feedback. Although technical documentation is useful, these re-

sources are decoupled from where the programmer needs the most

help—in their program environment as they work (Section 3.2.2

and Section 3.3.4).

Automated tools can help with this. For example, Johnson et al.

[33] propose “bespoke” notification tools that provide adaptive feed-

back to the programmer based on the programmer’s prior knowl-

edge of programming languages and concepts. Python 3 adopts this

idea of using prior programmer knowledge to assist programmers

who come from a Python 2 background, through hard-coded error

messages: in Python 2, print does not require surrounding paren-

theses, while in Python 3, print is a function and thus must be

called like any other function:

>>> print "Hello"
File "<stdin>", li

print "Hello"
^

SyntaxError: Missing parentheses in call to 'print'.

Did you mean print("Hello")?↪→

The SyntaxError message makes the assumption that this error

is due to a misconception (or ingrained behavior) instilled from

experience with Python 2. We can repurpose this idea generally to

language transitions and help programmers more efficiently resolve

error messages that they might otherwise only “eventually figure

out” (P1) after spending substantial time and effort.

Implication III—Be intentional about programming language
syntax, semantics, and pragmatics. Certain programming lan-

guages anticipate that new adopters arrive through common path-

ways. That is, we expect most new Rust users to come from sys-

tems programming languages like C++, and we expect most new

TypeScript users to come directly from JavaScript. For these users,

intentionally designing language features by considering interfer-

ence effects can reduce barriers (Section 3.3.2 and Section 3.3.3) to

adopting the new programming language.

As an example, a substantial barrier to new Rust users is the

borrow checker—a compile-time feature that helps enforce safe

memory management [71]—which our own participants described

as “a very alien concept” (P10). Even the Rust manual concedes

that borrow checking has a costly “learning curve” and that pro-

grammers “fight with the borrow checker” because their “mental

model of how ownership should work doesn’t match the actual

rules that Rust implements” [3]. Interference theory also explains

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin

these difficulties: for some programmers, the borrow checker is so

unfamiliar as a concept that they have no prior support to facilitate
learning; and for other programmers, borrow checker concepts at

a casual glance seem similar to existing models, such as “resource

acquisition is initialization” (RAII), in C++, but ultimately functions

differently enough that it interferes with their past knowledge.

Intentionally considering these adoption pathways as part of lan-

guage design can reduce these interference challenges. For instance,

the “primary goal of TypeScript is to give a statically typed experi-

ence to JavaScript development” and “the intention is that Type-

Script provides a smooth transition for JavaScript programmers—

well-established JavaScript programming idioms are supported

without any major rewriting or annotations” [19]. But providing

this smooth transition has a costly consequence: “the TypeScript

type system is not statically sound by design.”

As the two examples illustrate, designing for interference re-

quires making difficult design trade-offs. But if we want to design

programming languages that people actually use, we need to con-

sider how our language design decisions interfere or facilitate with

our anticipated programmers’ prior knowledge.

Implication IV—Support not only programming languages,
but programming language ecosystems. Issues with interfer-

ence when learning new programming languages are exasperated

when new programming languages bring with them new program-

ming language ecosystems—that is, “everything is different, not just
the programming language” (P5), but the environment in which the

programmer builds, edits, debugs and tests their code (for example,

tech shock, Section 3.3.5).

To address these challenges, React developers provide tool sup-

port to welcome programmers into the new ecosystem. Specifi-

cally, the create-react-app [9] is an integrated toolchain that

abstracts away the complexities of third-party library management,

live-editing, optimization, and configuration. create-react-app
allows the user to quickly and easily begin experimenting with the

library until the programmer is comfortable enough to eject from
the create-react-app toolchain.

A second method to minimize interference issues from ecosys-

tems is to unify the underlying tooling environment, or at least pro-

vide the programmers with a unified tooling experience. From this

perspective, we would recommend that toolsmiths and language de-

signers add support for programming languages to well-established

integrated development environments, rather than providing cus-

tom tool and editing experiences. For instance, the language server

protocol (LSP) [1] allows programming language support to be

implemented and distributed independently of any given editor or

IDE, as long as that IDE implements LSP.

In short, language designers should collaborate with tool design-

ers so that programmers can more easily adopt new programming

languages through editing environments that are already familiar

to them.

7 CONCLUSION
In this study, we conducted a mixed-methods study to understand

what impact previous programming language experience has on

programmers. We conducted an empirical study of misconceptions

found in Stack Overflow questions across 18 different program-

ming languages and semi-structured interviews with 16 profes-

sional programmers. From Stack Overflow, we found 276 instances

of interference that occur across multiple languages. We then in-

terviewed programmers who reported various challenges learning

a new language—like mixing up the syntax and concepts with

their previous programming languages—due to interference. We

discussed design implications for technical authors, toolsmiths, and

language designers, such as designing documentation and building

automated tools that reduce interference, anticipating uncommon

language transitions during language design, and welcoming pro-

grammers not just into a language, but its entire ecosystem. As

Peter suspected, even professional programmers have difficulties

with learning programming languages, and we should offer tools

and techniques to help them learn more efficiently and effectively.

ACKNOWLEDGMENTS
This material is based in part upon work supported by the Na-

tional Science Foundation under Grant Nos. 1559593, 1755762, and

1814798.

REFERENCES
[1] [n.d.]. Langserver.org. https://langserver.org/

[2] [n.d.]. Python for MATLAB Users. https://www.datacamp.com/courses/python-

for-matlab-users

[3] [n.d.]. References and borrowings. https://doc.rust-lang.org/1.8.0/book/references-
and-borrowing.html

[4] [n.d.]. To Ruby From Python. https://www.ruby-lang.org/en/documentation/

ruby-from-other-languages/to-ruby-from-python/

[5] 2010. Thinking in Clojure for Java Programmers. https://www.factual.com/blog/

thinking-in-clojure-for-java-programmers-1/

[6] 2014. Comparison with R / R libraries. https://pandas.pydata.org/pandas-docs/

stable/getting_started/comparison/comparison_with_r.html

[7] 2014. Rust for C++ programmers. http://featherweightmusings.blogspot.com/

2014/04/rust-for-c-programmers-part-1-hello.html

[8] 2018. New Course: Python for R Users. https://www.datacamp.com/community/

blog/course-python-r-users

[9] 2019. Create React App. https://create-react-app.dev

[10] Deborah J Armstrong and Bill C Hardgrave. 2007. Understanding mindshift

learning: the transition to object-oriented development. MIS Quarterly (2007),

453–474.

[11] William R Aue, Amy H Criss, and Matthew D Novak. 2017. Evaluating mecha-

nisms of proactive facilitation in cued recall. Journal of Memory and Language
94 (2017), 103–118.

[12] David Badre and Anthony DWagner. 2005. Frontal lobe mechanisms that resolve

proactive interference. Cerebral Cortex 15, 12 (2005), 2003–2012.

[13] Sebastian Baltes, Christoph Treude, and Stephan Diehl. 2018. SOTorrent: study-

ing the origin, evolution, and usage of Stack Overflow code snippets. CoRR
abs/1809.02814 (2018). arXiv:1809.02814 http://arxiv.org/abs/1809.02814

[14] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How

should compilers explain problems to developers?. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2018). 633–643. https:

//doi.org/10.1145/3236024.3236040

[15] Nathaniel Barragan. 2018. My experience with learning Rust. https://medium.

com/@nathanielbarragan/my-experience-with-learning-rust-bbcb6b7c1063

[16] RKE Bellamy and DJ Gilmore. 1990. Programming plans: internal or external

structures. Lines of Thinking: Reflections on the Psychology of Thought 2 (1990),
59–72.

[17] Erik Bernhardsson. 2017. The eigenvector of "why we moved from language X
to language Y". https://erikbern.com/2017/03/15/the-eigenvector-of-why-we-

moved-from-language-x-to-language-y.html

[18] Berry, Michael and Kölling, Michael. 2014. The state of play: a notional machine

for learning programming. In Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education. 21–26.

[19] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding Type-

Script. In ECOOP 2014 – Object-Oriented Programming, Richard Jones (Ed.). 257–

281.

Why Is It Difficult for Developers to Learn Another Programming Language? ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[20] Matt Bower and Annabelle McIver. 2011. Continual and explicit comparison to

promote proactive facilitation during second computer language learning. In

Proceedings of the 16th Annual Joint Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’11). 218–222. https://doi.org/10.1145/

1999747.1999809

[21] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer.

2009. Two studies of opportunistic programming: interleaving web foraging,

learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1589–1598.

[22] Virginia Braun, Victoria Clarke, Nikki Hayfield, and Gareth Terry. 2019. Thematic
Analysis. Springer Singapore, Singapore, 843–860. https://doi.org/10.1007/978-

981-10-5251-4_103

[23] Ruven Brooks. 1983. Towards a theory of the comprehension of computer

programs. International Journal of Man-Machine Studies 18, 6 (1983), 543–554.
[24] Julie A Carlson. 2010. Avoiding traps in member checking. Qualitative Report 15,

5 (2010), 1102–1113.

[25] Luis P Coelho. 2017. I tried Haskell for 5 years and here’s how it
was. https://metarabbit.wordpress.com/2017/05/02/i-tried-haskell-for-5-years-

and-heres-how-it-was/

[26] Michael C Daconta. 1996. Java for C/C++ Programmers. Wiley New York.

[27] Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. 2012. Detecting and

understanding students’ misconceptions related to algorithms and data struc-

tures. In Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education. ACM, 21–26.

[28] Françoise Détienne. 1995. Design strategies and knowledge in object-oriented

programming: effects of experience. Human–Computer Interaction 10, 2-3 (1995),

129–169.

[29] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[30] Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside the

glass box: presenting computing concepts to novices. International Journal of
Man-Machine Studies 14, 3 (1981), 237–249.

[31] D. J. Gilmore and T. R. G. Green. 1988. Programming plans and programming

expertise. The Quarterly Journal of Experimental Psychology Section A 40, 3 (1988),

423–442. https://doi.org/10.1080/02724988843000005

[32] Philip J Guo. 2013. Online Python Tutor: embeddable web-based program visual-

ization for CS education. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education. ACM, 579–584.

[33] Brittany Johnson, Rahul Pandita, Emerson Murphy-Hill, and Sarah Heckman.

2015. Bespoke tools: adapted to the concepts developers know. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,

878–881.

[34] Allen Jones. 2002. C# for Java developers. AOL Time Warner Book Group.

[35] J. Jonides and D.E. Nee. 2006. Brain mechanisms of proactive interference in

working memory. Neuroscience 139, 1 (2006), 181—193. https://doi.org/10.1016/j.

neuroscience.2005.06.042

[36] John Jonides, Edward E Smith, Christy Marshuetz, Robert A Koeppe, and Patri-

cia A Reuter-Lorenz. 1998. Inhibition in verbal working memory revealed by

brain activation. Proceedings of the National Academy of Sciences 95, 14 (1998),
8410–8413.

[37] Lisa C Kaczmarczyk, Elizabeth R Petrick, J Philip East, and Geoffrey L Herman.

2010. Identifying student misconceptions of programming. In Proceedings of the
41st ACM Technical Symposium on Computer Science Education. ACM, 107–111.

[38] Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to programming: a

taxonomy of programming environments and languages for novice programmers.

ACM Computing Surveys (CSUR) 37, 2 (2005), 83–137.
[39] Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in end-

user programming systems. In 2004 IEEE Symposium on Visual Languages-Human
Centric Computing. IEEE, 199–206.

[40] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement

for categorical data. Biometrics (1977), 159–174.
[41] Richard C Linger, Harlan D Mills, and Bernard I Witt. 1979. Structured program-

ming: theory and practice. (1979).

[42] Waren Long. 2017. Analyzing GitHub, how developers change programming
languages over time. https://blog.sourced.tech/post/language_migrations/

[43] Mark Mason. 2010. Sample size and saturation in PhD studies using qualita-

tive interviews. In Forum Qualitative Sozialforschung/Forum: Qualitative Social
Research, Vol. 11.

[44] Leo A Meyerovich and Ariel S Rabkin. 2013. Empirical analysis of programming

language adoption. In ACM SIGPLAN Notices, Vol. 48. ACM, 1–18.

[45] Claus Adolf Moser. 1952. Quota sampling. Journal of the Royal Statistical Society.
Series A (General) 115, 3 (1952), 411–423.

[46] H James Nelson, Deborah J Armstrong, and Kay M Nelson. 2009. Patterns of

transition: the shift from traditional to object-oriented development. Journal of
Management Information Systems 25, 4 (2009), 271–298.

[47] H James Nelson, Gretchen Irwin, and David E Monarchi. 1997. Journeys up the

mountain: different paths to learning object-oriented programming. Accounting,
Management and Information Technologies 7, 2 (1997), 53–85.

[48] Peter Norvig. 2000. Python for Lisp Programmers. https://norvig.com/python-

lisp.html

[49] Ajay Ohri. 2017. Python for R Users: A Data Science Approach. John Wiley &

Sons.

[50] Dino Paskvan. 2014. Why coffeescript? https://discuss.atom.io/t/why-

coffeescript/131/37

[51] Nancy Pennington. 1987. Stimulus structures and mental representations in

expert comprehension of computer programs. Cognitive Psychology 19, 3 (1987),

295–341.

[52] Bradley R Postle and Lauren N Brush. 2004. The neural bases of the effects of

item-nonspecific proactive interference in working memory. Cognitive, Affective,
& Behavioral Neuroscience 4, 3 (2004), 379–392.

[53] Bradley R Postle, Lauren N Brush, and Andrew M Nick. 2004. Prefrontal cortex

and the mediation of proactive interference in working memory. Cognitive,
Affective, & Behavioral Neuroscience 4, 4 (2004), 600–608.

[54] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other

difficulties in introductory programming: a literature review. ACM Transactions
on Computing Education (TOCE) 18, 1 (2017), 1.

[55] QuantEcon. 2017. MATLAB–Python–Julia cheatsheet. https://cheatsheets.

quantecon.org

[56] Charles Rich. 1981. Inspection Methods in Programming. Technical Report TR-604.
MIT. http://hdl.handle.net/1721.1/6934

[57] Jean Scholtz and Susan Wiedenbeck. 1990. Learning second and subse-

quent programming languages: a problem of transfer. International Journal
of Human–Computer Interaction 2, 1 (1990), 51–72. https://doi.org/10.1080/

10447319009525970

[58] Hari Shankar. 2011. Why learning Functional Programming and Haskell in particu-
lar can be hard. https://harishankar.org/blog/entry.php/why-learning-functional-
programming-and-haskell-in-particular-can-be-hard

[59] Ben Shneiderman and Richard Mayer. 1979. Syntactic/semantic interactions

in programmer behavior: a model and experimental results. Int’l J. Parallel
Programming 8, 3 (1979), 219–238.

[60] Nischal Shrestha, Titus Barik, and Chris Parnin. 2018. It’s like Python but:

towards supporting transfer of programming language knowledge. In 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
177–185.

[61] Nischal Shrestha and Chris Parnin. 2019. Instrument designs for validating cross-

language behavioral differences. In 2019 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 205–209.

[62] Elliot Soloway, Kate Ehrlich, and Jeffrey Bonar. 1982. Tapping into tacit pro-

gramming knowledge. In Proceedings of the 1982 Conference on Human Factors in
Computing Systems (CHI ’82). 52–57. https://doi.org/10.1145/800049.801754

[63] John Sweller, Paul L Ayres, Slava Kalyuga, and Paul Chandler. 2003. The expertise

reversal effect. (2003).

[64] Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. 2018. Programming

misconceptions for school students. In Proceedings of the 2018 ACM Conference
on International Computing Education Research. ACM, 151–159.

[65] Ma Dolores C Tongco. 2007. Purposive sampling as a tool for informant selection.

Ethnobotany Research and Applications 5 (2007), 147–158.
[66] Phillip Merlin Uesbeck and Andreas Stefik. 2019. A randomized controlled trial

on the impact of polyglot programming in a database context. In 9th Workshop
on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018)
(OpenAccess Series in Informatics (OASIcs)), Titus Barik, Joshua Sunshine, and
Sarah Chasins (Eds.), Vol. 67. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 1:1–1:8. https://doi.org/10.4230/OASIcs.PLATEAU.2018.1

[67] Benton J Underwood. 1957. Interference and forgetting. Psychological Review 64,

1 (1957), 49.

[68] Bartosz Walacik. 2018. From Java to Kotlin and Back Again. https://allegro.tech/

2018/05/From-Java-to-Kotlin-and-Back-Again.html

[69] Greg Wilson. 2018. The Tidynomicon: A Brief Introduction to R for Python Pro-
grammers. https://gvwilson.github.io/tidynomicon/

[70] Quanfeng Wu and John R. Anderson. 1990. Problem-solving transfer among
programming languages. Technical Report. Carnegie Mellon University.

[71] Anna Zeng and Will Crichton. 2019. Identifying barriers to adoption for Rust

through online discourse. In 9th Workshop on Evaluation and Usability of Pro-
gramming Languages and Tools. 15.

[72] Nailong Zhang. [n.d.]. Another Book on Data Science. https://www.

anotherbookondatascience.com

