
ICPC 2009

Resumption strategies for interrupted programming
tasks

Chris Parnin • Spencer Rugaber

Published online: 10 August 2010
� Springer Science+Business Media, LLC 2010

Abstract Interrupted and blocked tasks are a daily reality for professional programmers.

Unfortunately, the strategies programmers use to recover lost knowledge and rebuild

context when resuming work have not yet been well studied. In this paper, we describe an

exploratory analysis performed on 10,000 recorded sessions of 86 programmers and a

survey of 414 programmers to understand the various strategies and coping mechanisms

developers use to manage interrupted programming tasks. Based on the analysis, we

propose a framework for understanding these strategies and suggest how task resumption

might be better supported in future development tools. The results suggest that task

resumption is a frequent and persistent problem for developers. For example, we find that

only 10% of the sessions have programming activity resume in less than 1 min after an

interruption, only 7% of the programming sessions involve no navigation to other locations

prior to editing. We also found that programmers use multiple coping mechanisms to

recover task context when resuming work.

Keywords Interruption � Resumption strategies � Task context � Task knowledge

1 Introduction

Professional developers must frequently resume an unfinished programming task that has

been interrupted. The interruption may be due to an unexpected request from a co-worker,

a scheduled meeting, or a task blockage resulting from an unanswered question to a

colleague on vacation or from an unavailable server needed for development. Regardless of

the source, the effects are often the same: when resuming interrupted work, developers

C. Parnin (&) � S. Rugaber
Georgia Institute of Technology, Atlanta, GA, USA
e-mail: chris.parnin@gatech.edu
URL: http://cc.gatech.edu/*vector

S. Rugaber
e-mail: spencer@cc.gatech.edu
URL: http://cc.gatech.edu/*spencer

123

Software Qual J (2011) 19:5–34
DOI 10.1007/s11219-010-9104-9

experience increased time to perform the task, increased errors, increased loss of knowl-

edge, and increased forgetting to perform critical tasks (Parnin and DeLine 2010).

In order to resume an incomplete programming task, developers must recall their pre-

vious working state and refresh their knowledge of the software and task. Details of

working state include plans, intentions, and goals; details of knowledge include relevant

artifacts, component mechanisms, and domain representations. Unfortunately, the nature of

the knowledge and program artifacts does not make this process any easier. First, much

knowledge used for the programming task is of a tacit and ephemeral nature-it is not

explicitly written down anywhere, and it involves many temporary details that have not yet

deeply taken root in the mind. Therefore, an interruption can be detrimental to retaining

this type of knowledge. Second, a software program, unlike a novel or television series,

does not have a simple linear structure-a recap or rescanning the last few paragraphs of text

is not enough to allow the developer to resume work. Instead, the relevant information

exists across various artifacts and locations and must be actively sought out and restored in

the mind.

Developers are certainly not alone in facing problems with interruptions. Several psy-

chological studies of simple tasks and observational studies of knowledge workers have

characterized the effects of interruptions on people. In psychology studies of interruptions,

researchers have measured the effects on performance (Cutrell et al. 2001) and mental

fatigue (Offner 1911) as well as understanding the contribution of interruption frequency

(Monk 2004) and interruption length, task similarity, and task complexity (Monk et al.

2008; Gillie and Broadbent 1998) on performance. Despite efforts for managing inter-

ruptions, in situ studies suggest interruptions remain problematic for knowledge workers.

Czerwinski’s study (Czerwinski et al. 2004) showed that tasks resumed after an inter-

ruption were more difficult to perform and took twice as long. O’Conaill’s study

(O’Conaill and Frohlich 1995) found 40% of interrupted tasks are not resumed at all.

Further research by Mark et al. (2005) observed 57% of tasks were interrupted and as a

result work on a task often was fragmented into many small work sessions.

Studies examining software companies have replicated results from earlier workplace

studies. van Solingen et al. (1998) characterizes interruptions at several industrial software

companies and observed that an hour a day was spent managing interruptions, and

developers typically required 15 min to recover from an interruption. Ko et al. (2007) used

a fly-on-the-wall (Lethbridge et al. 2005) approach to observe software developers at

Microsoft and found that they were commonly blocked from completing tasks because of

failure to acquire essential information from busy co-workers. Another study at Microsoft

indicated that 62% of developers surveyed believed recovering from interruptions was a

serious problem (Latoza et al. 2006).

Although many studies have described the effects and circumstances of interruptions,

few describe the strategies programmers use to cope with interruptions. Research on

program comprehension has typically focused on exploring a new program or making a

new change; however, with an interrupted task, programmers are instead re-compre-

hending a program and related artifacts in order to resume work. This paper describes our

study of the interruption problem and makes the following contributions:

1. A contextual inquiry and analysis of programming sessions to understand the various

activities that take place before resuming work.

2. A characterization of several strategies for resuming programming tasks.

In the next section, we present some background material and relevant concepts for

understanding interruptions. We then describe a schema for task knowledge and set of

6 Software Qual J (2011) 19:5–34

123

accompanying resumption and suspension strategies that can be used to understand how

programmers manage interrupted programming tasks. This is followed by a discussion of

datasets we use for evaluating the plausibility of our described strategies. Next, we

describe the results from our analysis of the datasets. The strategies are then compared and

discussed in the context of current tool support. We conclude with future directions for this

research.

2 Background

In this section, we describe concepts related to interruptions, the timeline of recovering

from an interruption, the nature of task knowledge and human memory, and the role that

environmental cues and basic strategies play in managing interruptions.

2.1 Interruptions and multitasking

The nature of an interruption is an important determinate on the extent of the interruption’s

impact. Disruptive interruptions often comes at an inopportune moment and gives insuf-

ficient time for a programmer to preserve mental working state. These inopportune

moments tend to align with programmers using large amounts of intermediate knowledge

that does not yet have any tangible externalization representation nor have a firm foothold

in the programmer’s mind. However, not all interruptions are involuntary: Other reasons

for suspending a programming task include fatigue, desire for reflection, road blocks, and

reaching a stopping point. These types of interruptions are called self-interruptions. The

nature and timing of an interruption influences the type of suspension strategy used and the

amount of knowledge at risk for loss. In this paper, we do not make any assumptions about

the nature of an interruption, but instead focus on observing the activities of resuming a

programming task after a break in programming activity.

Often, the term multitasking is confounded with the term interruption. To better situate

these terms, Salvucci et al. (2009) describe a continuum of multitasking behaviors that can

be used to understand the impact of interrupting a task. The continuum spans from con-

current multitasking (driving in car and talking) to sequential multitasking (writing a paper

and reading email). In concurrent multitasking, task switching costs are high if both tasks

require access to different problem states (Borst and Taatgen 2007). In sequential multi-

tasking, task switching costs are especially high if working state has not been adequately

preserved and suspended, which is typical with interruptions.

2.2 Resumption timeline

A key measure of the effect of an interruption on resumption is called the resumption lag
(Adamczyk and Bailey 2004; Altmann and Trafton 2004, 2007). Resumption lag measures

the time it takes for a person to recollect their thoughts when returning to a task. In

experimental studies, resumption lag is typically measured as the time between a subject

being told to resume a task and the first physical response made, such as mouse click.

Similarly, interruption lag (Altmann and Trafton 2004, 2007) describes the time between

when the user stop working on a task and when they begin addressing the interruption (e.g.,

writing a note before picking up the telephone).

Figure 1 shows the time line of a programmer editing code, stopping, and then resuming

work. Each period of programming activity describes one session of work. The depiction of

Software Qual J (2011) 19:5–34 7

123

the session is adopted from the visualization used in the SpyWare tool (Robbes and Lanza

2007). The graph displays the edits per minute (EPM) during a development session. The

vertical axis corresponds to the number of edits, and a point on the horizontal axis cor-

responds to 1 min.

During or before the interruption lag, there are several strategies for negotiating the end

of the interruption lag, often referred to as the breakpoint. McFarlane has evaluated and

compared the different strategies for setting a breakpoint: immediately addressed inter-

ruption, scheduled (defined time limit), negotiated (user decides), mediated (third party

decides if busy user looks interruptible) (McFarlane 2002).

Miyata and Norman (1986) suggest that people seek breakpoints at moments where the

current task requires low mental workload. Indeed, studies of interrupted tasks such as

document editing or route planning have demonstrated that breakpoints at moments of

higher mental workload cause longer resumption lag than breakpoints at lower mental

workload (Adamczyk and Bailey 2004; Iqbal and Bailey 2005). As observed in their studies,

a less disruptive interruption arose when the breakpoint could be delayed by a few seconds.

Forgarty et al. (2005) performed an experiment to predict the interruptibility of pro-

grammers and the time needed to reach a breakpoint. In the experiment, programmers were

interrupted every 3 min with a multiplication problem. The programmer had the choice to

delay addressing the interruption until a good breakpoint was reached. For most inter-

ruptions, the programmers would address the interruption within 10 s; however, when

more deeply engaged, they would defer for a mean of 43 s.

2.3 Task knowledge

In the course of a programming task, developers accumulate transient knowledge needed to

perform the task. For example, during corrective maintenance of software, a developer may

generate several hypotheses about how the program behaves (Mayrhauser and Vans 1997).

Task knowledge, such as an explanatory hypothesis and the related program elements, is a

temporary representation that assists in maintaining and manipulating relevant knowledge

about a program and problem state. Loss of this knowledge can be costly, requiring the

programmer to redo time-consuming and cognitively difficult work.

Kersten and Murphy (2006) have proposed a model that captures some aspects of task

knowledge. Task context refers to the relevant artifacts of a program; that is, to a subset of

program elements. Task context is a useful concept for building tools-Mylyn,1 a plugin

available with Eclipse, allows users to filter code documents based on a selected task and

recent activity. The benefit of this representation is its ability to reduce the interference of

I R

breaksession session

EPM
minutes

Fig. 1 Interruption lag (I) and Resumption lag (R). During the brief period of interruption lag, the
programmer may actively encode their mental working state to prevent an increased latency when resuming
a task (resumption lag)

1 http://www.eclipse.org/mylyn

8 Software Qual J (2011) 19:5–34

123

http://www.eclipse.org/mylyn

non-relevant code on recall, especially in the case of returning to a task that had be shelved

for a long period of time. However, Mylyn’s representation mainly assists with recovering

the necessary artifacts for the task, but does not aid the user in planning the next steps or in

evaluating the progress made.

Missing from task context are cognitive elements associated with the task such as goals or

mental representations. Miyata and Norman (1986) describe performing a task in three

phases: planning, execution, and evaluation. These phases are commonly hierarchical

(Adamczyk and Bailey 2004). Interruptions during different phases have different effects

(Zijlstra et al. 1999) that require different kinds of knowledge to support resumption.

Researchers have tried to postulate what types of cognitive elements exist for programmers.

A theme that emerges from different empirical studies is that programmers formulate two

types of goals: those that relate to doing work and those that reflect on the status of their work.

Anderson et al. (1984) describe inherent and planned goals. Allwood (1984) describes

progressive and evaluative goals; O’Brien and Buckley (2005) refer to progressive and

evaluative efforts in their work on information forging as a comprehension strategy. Pen-

nington and Grabowski (1990) refers to these as composition and evaluation goals.

2.4 Memory

A programmer must be able to manage mental representations of both her program and

problem state. In supporting this work, memory is an essential mechanism for maintaining

and manipulating these mental representations. The human mind contains a variety of

functional memory types that a programmer may take advantage of. For example, long-

term memories help programmers remember facts about a program, whereas spatial

memory (Ratwani and Trafton 2008) help programmers orient their attention among many

artifacts and windows in a programming environment.

One of the earliest contributions to memory began in 1956 with Miller’s work on

limitations on information processing. Regardless of what item a participant was being

asked to memorize, Miller observed that the capacity appeared to be five to nine items

(Miller 1994). Recent research has suggested the actual limit is closer to four items (Cowan

2001). In 1968, Atkinson and Shiffrin presented an influential model of memory called the

modal model of memory. In the modal model, information is first stored in sensory

memory. Attentional processes select items from sensory memory and hold them in short-

term storage. With rehearsal, the items can be moved into long-term storage. The model

characterizes the process of obtaining long-term memory as a serial and intentional process

with many opportunities to lose memory along the way via decay or interference from

newly formed memories. Attempting to refine the modal model’s account of short-term

memory, in 1974, Baddeley and Hitch introduced the model of working memory. The

concept of working memory was introduced to help explain how items could be manip-

ulated and processed in separate modalities (e.g. visual versus verbal).

Attempting to understand how experts could exceed the limits of short-term and working

memory, Chase and Simon proposed that experts such as chess players learn how to effec-

tively chunk information after extensive practice and study (Chase and Simon 1973).

Alternatively, Chase, Ericsson, and Staszewski (Chase and Ericsson 1982, Ericsson and

Staszewski 1989) later proposed the skilled memory theory from observations of mnemonists

and experts in a variety of domains. The skilled memory theory identifies two key strategies

experts use to achieve their remarkable memory and problem-solving ability: (a) information

is encoded with numerous and elaborated cues related to prior knowledge similar to Tulving’s

encoding specificity principle (Tulving and Thomson 1973); (b) experts develop a retrieval

Software Qual J (2011) 19:5–34 9

123

structure for indexing information in long-term memory (for example, experts might asso-

ciate locations within a room with material to memorize by mentally visiting locations within

the room, the expert could retrieve associated items from those locations).

Recently, the skilled memory theory has been extended into the long-term working

memory theory, which claims many of the problems with previous theories can be

explained if working memory actually involves immediate storage and activation of long-

term memories (Ericsson and Kintsch 1995). This view is consistent with neurological

views of memory. Morris and Frey (1997) postulate that the hippocampus provides the

ability for an ‘‘automatic recording of attended experience’’. They argue that many

important events cannot be anticipated nor may they occur again, and therefore traces and

features of experiences must be recorded in real time as they happen and provide evidence

from animal studies. Further, Morris (2006) makes the argument based on numerous

neuroanatomical studies that the hippocampus does not store sensory stimuli directly, but

rather associates indices into other cortical regions.

Researchers distinguish between sensory, short-term, working memory, and long-term

memory. For long-term memory, Squire (2004) proposed a taxonomy that divides types of

long-term memory hierarchically starting with a distinction between non-declarative

(implicit) and declarative (explicit) memories. Non-declarative memory includes priming

and muscle memory whereas declarative memory includes knowledge of facts and events.

Tulving (1972) describes semantic memory as knowledge of facts and episodic memory as

a recollection of past events. Other types of memory have been identified including

familiarity, the ‘feeling of knowing’’ that an object in a particular context has been

encountered before without necessarily recalling the situation the object has been

encountered (Gilboa et al. 2006); recency, recalling how long ago a recent event occurred

(Milner et al. 1991); and prospective memory, remembering to remember to perform an

action in the future under a specific context (e.g., setting up a mental reminder to buy milk

on the way home from work) (Winograd 1988).

Interruptions place additional cognitive demands, introduce conflicting and interfering

goals, and decay and delay processing of human memory; however, understanding how

interruption affects memory is still an open research question. Abstracting from the

underlying memory mechanics, Altmann and Trafton (2002) have proposed a general

cognitive framework for modeling the effects of interruptions on tasks and associated

problem state. Memory for goals is an activation-based approach for memory that builds on

the ACT-R cognitive framework (Anderson et al. 2004). In this theory, goals and the

associated problem state in working memory compete for attention based on their level of

activation such that, at any given time, the most active goal directs behavior. As time

passes, the activation levels of memory decay over time. When interrupted, the current

primary task goal is suspended and the activation level of this goal decays. Upon

resumption, the time required to begin work on the primary task reflects the process of

retrieving the suspended goal. The higher the activation level of the suspended goal, the

more easily that goal can be retrieved. There are several constraints that determine the

activation level of the suspended goal. First, the history of the goal (i.e., frequency and

recency of goal retrieval) impacts goal activation. Second, the availability of environ-

mental context and cues may prime activation of the goal.

2.5 Environmental cues

The memory for goals framework predicts that environmental cues would reduce the time

to retrieve a suspended goal. Recent research has demonstrated strong connection between

10 Software Qual J (2011) 19:5–34

123

the availability of environmental cues and reduced resumption costs (Altmann and Trafton

2002; Hodgetts and Jones 2006; Trafton et al. 2005). Conversely, if the cue is removed or

tampered with, this benefit is removed. This holds even for implicit cues, such as the

location of a mouse cursor. For example, in one experiment when the mouse cursor

location was moved from where it was when it was last clicked to be in the corner of

screen, the resulting resumption lag was higher than when the implicit cue left undisturbed.

Observations of developers suggest that they frequently rely on cues for maintaining

context during programming. For example, Ko et al. (2005) observed programmers using

open document tabs and scrollbars as aids for maintaining context during their program-

ming task. However, environmental cues often do not provide sufficient context to trigger

necessary memories: In studies of developer navigation histories, a common finding is that

developers frequently visit many locations in rapid succession in a phenomenon known as

navigation jitter (Singer et al. 2005). Navigation jitter takes the form of developers flipping

through open tabs and file lists when trying to recall a location (Singer et al. 2005; Parnin

and Görg 2006). Environmental cues such as open tabs may be insufficient because what a

developer remembers may be spatial and textual cues within the code document (what they

work directly with) and not the semantic or structural location of the code element when

automatically encoding working state (Trafton et al. 2003).

An initial experiment by Safer and Murphy (2007) supports the insufficiency of even

semantic-based cues. In the experiment, the authors investigated two cue designs for

recalling information about recent programming tasks. The participant performed four

programming tasks, with each task lasting about 15 min. After all the tasks were com-

pleted, the user was asked to identify the specific time at which each task was started and

finished. The participant was aided by one of two cues for identifying the task boundaries.

One cue stressed an episodic presentation of the activity history: a timeline of screenshots

displayed a frame-by frame playback of the entire programming session. The other cue

stressed a semantic presentation of activity: a timeline of tree views containing the pro-

gramming artifacts (files and methods) that were visited or edited for an event. Using the

episodic-based cue, users were able to identify task boundaries quicker and with less errors

than with the semantic-based cue. However, there were several unresolved issues. The

semantic-based cue was not as efficacious as the episodic cue-it did not include a way to

navigate and view the source code, which is a standard interface for a tree view in a

programming context, whereas the episodic cue inherently conveys the source code. This

performance difference, nevertheless, suggests that file and method names alone may be

insufficient for recalling certain details about recently performed work.

2.6 Interruption management strategies

Researchers studying interruptions have observed basic strategies people use for managing

interruptions. Besides the strategies concerning timing of the task’s breakpoint (McFarlane

2002) and priming based on environmental cues (Altmann and Trafton 2004), people also

use prospective measures of rehearsal or various forms of externalization (note-taking).

Trafton et al. (2003) have observed people using prospective rehearsal of their tasks.

Taking prospective measures at the time of interruption has both negative and positive

effects (Trafton et al. 2003). Prospective measures are primarily successful when users

have environmental cues about working state (e.g., an error message associated with a bug

being fixed) that are present during both the interruption lag and the resumption lag. When

comparing written notes versus mental notes, written notes were found to be effective in

assisting recall, but negatively affected the ability to recall contextual details about the

Software Qual J (2011) 19:5–34 11

123

task. The evidence suggests controlled memory processes may override or interfere with

automatic encoding.

Researchers have investigated what artifacts information workers used when managing

tasks. Bellotti et al. (2004) studied the various media employed by nine different managers

and found that, in addition to using paper media such as sticky notes, 50% of the tasks could

be linked to emails. Brush et al. (2007) observed eight workers who needed to frequently

file status reports of their weekly activity. Five out of the eight workers attempted to

continually track information in a centralized location: e.g., notepad or ongoing email draft-

but all participants also complemented their tracking strategy with memory triggers to

retrieve details needed for composing the report. There is also evidence that developers use

different sources of information for maintaining context. Software developers often need to

remember prospective tasks that they are unable to complete at the moment but need to

complete in the future. Failure to remember prospective tasks is a common occurrence with

interrupted tasks (Czerwinski et al. 2004). Other researchers have observed how pro-

grammers use task annotations (Storey et al. 2008) to record prospective task and proposed

systems for capturing prospective tasks (Dekel 2008; Storey et al. 2008).

3 Resumption strategies

In this section, we describe various strategies for suspending and resuming an interrupted

programming task. The general course of handling an interruption is described in three

phases: suspension, resolution, and resumption. During the suspension phase, the pro-

grammer uses one of the basic strategies of rehearsal, serialization, and cue priming to save

working state. Next, the programmer resolves the problem causing the interruption.

Finally, the programmer returns to the programming task and reacquires the task’s goals,

plans, context, and representations with the assistance of the saved state. In the later

sections, we compare these strategies to practice.

3.1 Working state

In this paper, we consider working state to be comprised of these four elements: artifacts

(task context of programming elements), plans (actions to perform), goals (objectives to

fulfill), representations (mental representations of task context and specialized domain

knowledge needed in task (e.g., parsing, html flow layout).

3.2 Suspension strategies

During the interruption lag, a programmer has the chance to preserve working state for

faster resumption. Depending on the interruption type (unanticipated or planned), the

programmer may have more available time for this process. Although preservation of work

environment (e.g., saving files, backups, background processes) is an important aspect, we

do not discuss this further in the paper. We discuss suspension strategies in the context of

an individual; however, these strategies can be relevant in other contexts such as a task

hand-off to another team member.

A programmer may suspend a task through internalization and externalization of

working state. With internalization, the programmer uses memory tactics to remember the

working state, whereas with externalization, the programmer uses physical or electronic

media to preserve the working state. Often these processes complement each other. For

12 Software Qual J (2011) 19:5–34

123

example, if a programmer externalizes working state through note-taking, then this process

will also bolster internalization of the working state. On the other hand, the programmer

may use an external cue when internalizing working state.

There are three types of suspension strategies programmers can use: rehearsal, seriali-
zation, and cue priming. With rehearsal, programmers retain working state by increasing the

activation level of working memory. This strategy is mainly used for retaining high-level

information over short to medium interruption durations. For short-term interruptions, the

boost in activation level of the memory should sufficiently allow the working state to be

recalled. However, this mechanism only enables a small amount of information to be

rehearsed. During the interruption lag, the programmer must evaluate the progress of the

task and determine what piece of task knowledge would be most important to retain. Often,

the programmer will focus on the remaining actions that need to be performed and will rely

on the availability of environmental cues to activate more details (Parnin and DeLine 2010).

Serialization, the externalization of working state is a powerful way of retaining task

knowledge; however, it can be costly. The conflict that arises with serialization is due to

the difficulty in recording knowledge (e.g., even jotting down a couple of class and method

names can be a slow process). In general, there is a trade off programmers can make in

serializing task knowledge between visibility and context. Programmers can reduce the

effort representing task knowledge by situating the transient representation in the context

where is it needed (e.g., placing the comment ‘‘Fix this’’ within the source code as a

reminder). On the other hand, that same comment placed on a sticky note ‘‘Fix this’’ is

more likely to be visible but offers little context in recalling detail. The risk the pro-

grammer runs in placing a situated note is failure to encounter and recall the note when

intended, whereas the cost of writing an unsituated note is that the further away from the

source, the more context has to be specified for it to be understandable. A note that

reproduces context outside of the original source is a reconstructive note. Often this takes

the form of a sketch or diagram (Cherubini et al. 2007). As a result of this serialization

cost, programmers will often focus on recording task objectives and limited amounts of

task context or plans of actions.

Cue priming is a strategy that can be frequently and quickly applied. Cue priming

involves preparing or finding environmental cues to trigger recall upon resuming the task.

A developer may leave open the last window she was editing, highlighting several lines of

code, or leave open an error message that occurred while testing the program. This sus-

pension strategy can be very useful because it only takes a few seconds to set up and often

resumption can be very quick upon returning to work. However, this strategy is largely

opportunistic and potentially fragile-the developer might not have such a convenient

mnemonic available if she is in the middle of program exploration or effecting a large

change. Further, transient cues may be lost or disturbed by new interactions with the

environment or in the event of the IDE shutting down. Another problem with cue priming

as a suspension strategy is that programming environments are not designed to easily leave

behind cues from multiple locations within the program. As with a situated note, it may be

easy to miss potentially useful cues. To compensate, a programmer can actively leave

behind roadblock cues, such as compile errors, which will force the programmer to

encounter the cues when resuming work.

Finally, there are some prospective measures programmers can take that are not spe-

cifically related to suspending working state during the interruption lag. For example, a

programmer can clean up their task context by closing out windows that will not be needed

upon returning to the task. This pruning process will assist the programmer in reducing

interference with dangling pieces of context. Second, a programmer can use task

Software Qual J (2011) 19:5–34 13

123

scaffolding akin to externalization during performance of the task by first marking up the

code with high-level comments describing intended changes. The comments can serve as a

representation of the task’s change plan and assist the programmer in resuming the task.

3.3 Resumption

During the resolution phase of an interruption, more time might have passed than the

programmer expected, especially in the case of blocked tasks or changes in task priorities

(Ko et al. 2007; van Solingen et al. 1998). Sometimes an interruption can consume the

only available time within a day (the rest of the day is filled with meetings), causing the

programmer to push back work to another day.

Rather than being exact duals of suspension strategies, resumption strategies often are

more mixed and demand-driven due to the incomplete nature of suspension and unex-

pected degradation of memory from unexpected delay or failure. What makes the

resumption strategies distinct is what needs to be restored—this is often reflected by the

task’s breakpoint (e.g., task is still in the planning stage or deep within the task hierarchy).

3.3.1 Global restoration

When returning to a programming task, a programmer might have only a vague idea of his

last activity. In this scenario, a programmer might use global restoration strategies that

elicit clues for recovering working state: return to last stopping place and navigate to
remember. The most obvious and direct strategy a programmer might try is to return to the

last scene where work took place. If the task is localized, then sufficient information should

be available that the programmer can read the surrounding code, regain task knowledge,

and then resume work.

If the programming environment is still available in its previous state, than numerous

memory cues can be used. Memory cues are strong devices because they can trigger a

variety of memory types and hasten the time of recovery through spreading activation of

other memories. Cues are particularly important for prospective (reminders to perform an

action) and episodic (temporal, spatial and visual memories of recent events) memories.

Therefore, even seemingly random navigation has several tactical advantages. First, it

increases the chance that programmers will encounter other memory cues and more memory

cues will lead to more targeted navigation. Second, the process of navigation will prime the

programmer and help him or her to maintain spatial awareness for the coming task.

3.3.2 Goal restoration

Sometimes if a task is not well specified or is resumed near its completion where there

might be several clean-up work remaining, then the programmer might need to reacquire

intermediate goals that were formulated previously. The strategies for restoring goal state

can be top-down or bottom-up. Review Task Assignment is a top-down strategy where the

programmer uses the original task description to refresh the goals and objectives of the

task. With this strategy, the programmer uses the top-level goal to remember details about

their last working activities and evaluate which steps need to be performed next. The

programmer may use this reacquired goal as a filter for restoring other parts of the task

context. Execute Program is a bottom-up strategy where the programmer uses the output or

behavior of the program to evaluate the success of the task and determine any outstanding

14 Software Qual J (2011) 19:5–34

123

issues. Running the program has the advantage of priming the domain representations and

quickly triggering goals that are not explicitly represented. However, the nature of some

programs or the non-compiling state of a program may make this strategy not always

applicable. A final strategy is Restore from Task Breakdown. This strategy relies on the

programmer to maintain a written list or hierarchical breakdowns of the task into other

smaller tasks. This strategy can be very successful in restoring goals, but its applicability

depends on the level of detail a programmer will track explicitly.

3.3.3 Plan restoration

Whereas goals provide objectives for evaluating the completeness of the task, plans

describe what sequences of actions to apply to a program. If the exact plan of action is not

clearly recalled, then the programmer will use several strategies for recalling what actions

to perform. A common strategy for restoring plan knowledge is Review Source Code
Change History. There are several advantages to comparing differences in source code

versions. Differences reveal a detailed account of progress in complementing a task. From

the differences, the programmer has a baseline for evaluating the progress of the task.

Second, the programmer can potentially identify deficiencies in the solution, such as he

forgot to apply a global update to a certain location. Lastly, the differences can trigger

memories of the associated plan for the task. Search for Prospective notes is a comple-

mentary strategy when programmers suspend prospective tasks. Searching for serialized

task annotations, prospective notes such as TODO comments, or intentional compile errors

provide reminders to perform certain actions. The collection of these reminders can help

reformulate the plan for the task. For example, if the program has several compile errors, as

the programmer addresses the errors, he recalls that the errors were caused by copying and

pasting the code from another location, without renaming relevant variables. This further

recalls why this change was made and helps restore the plan knowledge.

3.3.4 Context restoration

Often restoring task context can follow acquiring goal and plan knowledge. Even though a

programmer can see if a certain code element was visited via an open document tab,

without recalling the association with a particular goal or plan the programmer has not

fully integrated this information with her task knowledge. However, if a programmer

recalls a goal or plan, then this new knowledge provides enough clues to perform a search

to identify or directly recall the relevant program elements. Besides using goals or plans to

direct navigation, task context can be restored as a byproduct of efforts used to restore

goals and plans. For example, a source revision difference will reveal the locations that

belong in the task context. Finally, task context itself can bootstrap recall by triggering

associated memories of goals and plans which in turn recall other relevant components of

task context.

3.3.5 Representation restoration

Restoring temporary representations used in the task can be difficult if not actively seri-

alized in a reconstructive note or if the representation is not familiar or common. Besides

note-taking and learning representations, there are currently no available strategies that

programmers can use to improve this process.

Software Qual J (2011) 19:5–34 15

123

3.4 Summary

When a programmer suspends and later resumes a programming task, a variety of factors

will determine which strategies the programmer uses. Some suspension strategies are

more suited to quick and local suspension; others are better at capturing detailed task

knowledge. Depending on the nature of the suspended task and the preparation taken to

preserve task knowledge, the programmer can select the most appropriate combination of

resumption strategies to restore missing task knowledge. We present a summary of the

suspension strategies (see Table 1) and resumption strategies (see Table 2) the developer

may use. In the next sections, we seek to measure, analyze, and understand how these

strategies are used in practice and gain insight into where these strategies fall short and

need support.

4 Datasets and measures

In this section, we describe the data sets and related measures we use for analysis. The

content of the data sets include the interaction history captured from developers pro-

gramming in their natural settings. Interaction history is the record of low-level events

(including navigation and edit events) from a programmer using an IDE.

Table 1 Suspension strategies vary in transcription speed, completeness, and durability of suspended task
knowledge

Suspension strategy Description Resource

Rehearsal Internalize thoughts and representations
through subvocalization

Serialization Write down internal thoughts and
representations

Situated, unsituated,
reconstructive notes

Cue priming Seek or enhance cues for aiding resumption. Roadblock, env. cues

Context pruning Discard irrelevant items

Task scaffolding Create placeholders in source code
to outline task

Comments, method stubs

Table 2 Different resumption
strategies restore different task
knowledge

Resumption strategy Description

Return to last stopping place Review recent context to restore
goals or plans

Navigate to remember Restore context and goals through
navigation

Review task assignment Restore high-level goals

Execute program Evaluate state of program to obtain
goals

Restore from task breakdown Restore from a low-level goal

Review source code
change history

Evaluate past actions to remember
next actions

Search for prospective notes Seek reminders for next actions

16 Software Qual J (2011) 19:5–34

123

4.1 Interaction history

We draw upon a variety of data sets in our analysis. The first data set we will call the

Eclipse data set; it was originally collected in the latter half of 2005 by Murphy et al.

(2006). The researchers used the Mylyn Monitor tool to capture and analyze fine-grained

usage data from volunteer programmers using the Eclipse development environment.2

The Visual Studio data set was collected in 2005 by Parnin and Görg (2006) at an

industrial site. The previously published data included ten developers for 30 work days

(1.5 months). Since the original publication, the data we report in this paper also includes

two more developers and a few more months of data.

The UDC dataset is publicly available from the Eclipse Usage Data Collector (2009)

and includes data requested from every user of the Eclipse Ganymede release. Activity is

recorded from over 10,000 Java developers between April and December 2008. The data

counts how many programmers have used each Eclipse command, such as navigations or

refactoring commands, and how many times each command was executed.

To obtain the developer’s sessions, the events were segmented when there was a break

in activity of 15 min or more. This segmentation is well supported by the nature of the

data. The interval between events follows a Poisson distribution: for 98% of the 4.5 million

events, the time between those events is less than a minute. This means tight clusters can

be formed with any threshold above a minute. Similar thresholds have been supported in

other studies (Zou and Godfrey 2006; Robbes and Lanza 2007).

Events collection is performed solely by the IDE. Although, what appears to us is a

break in programming activity, the developer may be engaging in a related task such as

checking in source code or searching for online code examples. If we included window

focus events (Renaud and Gray 2004), then we could better explain these breaks. Nev-

ertheless, we believe many breaks from programming activity are due to diversions

(Bannon et al. 1983) that often derail programming efforts, as observed by Ko et al.

(2007).

There are some instrumentation differences between the data sets. In the Eclipse data

set, an edit event was registered whenever a programmer typed (i.e., roughly an event per

word); however, in the Visual Studio data set, an edit event was collected for each line

edited. Another differences was that in the Visual Studio data set, transition events were

more finely observable because navigation events within a code editor were recorded,

which was not true in the Eclipse data set.

In our analysis, we accounted for these differences by running the experiments sepa-

rately to check for any discrepancies between the data sets. A summary of our data sets can

be seen in Table 3.

4.2 Survey

We conducted a survey of 371 programmers at Microsoft and 43 programmers from a

variety of companies including small startups as well as defense, financial, and game

companies. We initially conducted the external study and encouraged by the feedback,

distributed the survey with slight modifications to employees at Microsoft. Overall, we find

2 http://eclipse.org

Software Qual J (2011) 19:5–34 17

123

http://eclipse.org

general agreement with the external survey and internal survey, but only report the internal

results for this paper.

As we were primarily interested in professional software development, we selected our

population from full-time software developers—excluding interns or people in roles such

as tester or project manager. We also excluded developers that had been solicited for other

surveys by our research group to avoid oversampling. Respondents were compensated by a

chance to win a $200 gift certificate. From our participant pool, we randomly sampled

2,000 developers and invited them to participate through email.

Participants answered fifteen fixed- and open-response questions about interruptions.

The participants were asked to describe in detail the cost of interruptions, the steps they

took to prepare for an interruption, the resumption strategies they used, factors that made

resumption difficult, and their thoughts on future tools. We drew the selection of future

tools from current research proposals for improvements to programming environments. We

wanted to determine if programmers were primarily interested in tools to help them

manage task state or in tools that augment cues within the programming environment.

In the following section, we will compare results of our analysis to the results obtained

through our survey.

4.3 Measures

4.3.1 Edit lag

Although previous work has demonstrated that strong correlations between interruptions

and increased resumption lag exist, the measured resumption lag has been on the order of

seconds. In the domain of software development, the effects of interruption are believed to

have a larger impact on loss of context and the recovery period to be on the order of

minutes (van Solingen et al. 1998). Therefore, we propose a specialized measure of

resumption lag, called edit lag, which is the time between returning to a programming task

and making the first edit (see Fig. 2).

In this study, we focus most of our analysis on edit lag to gain insight into what

activities developers perform before they have regained enough context to resume editing

for that session. Undoubtedly, developers perform numerous activities other than coding

during software development; however, studying the moment coding begins in a session

serves as a logical starting point for asking why developers performed a series of activities

before making an edit and how much of that is related to resumption costs. For this reason,

we only examine sessions with coding activity.

Table 3 Summary of data in UDC, Visual Studio, and Eclipse data sets

Dataset Stats

Users Sessions Filtered* Edits? Events

UDC 10,000?

Visual Studio 12 1972 1561 1213 573,998

Eclipse 74 7927 5931 3962 3,937,526

Total 86 9,899 7492 5175 4,511,524

The column Filtered* indicates the remaining number of sessions after removing sessions with a duration
less than one minute and the column Edits? indicates the number of filtered sessions with at least one edit
event

18 Software Qual J (2011) 19:5–34

123

5 Analysis

When a programmer is interrupted from a programming task, what activities are needed to

perform in order to resume work? In this section, we shed some light on this question-but a

more pressing question should be answered first: Is there even any meaningful impact from

interruption? Are programmers immediately able to return to effective work without a

resumption delay?

To understand the possible impact of interruptions on developers, we first measure the

distribution of edit lag. If we observe that most values of edit lag are less than 1 min, then

we would likely conclude the impact of interruptions are negligible or not immediately

observable in this window of time. Second, we characterize the number and size of ses-

sions in the day to see how often a programmer must resume work in a day.

In Fig. 3, we display the distribution of edit lag among all sessions having editing

activity. In 10% of the sessions, edit lag was less than a minute. For the rest of the sessions,

several minutes pass until the first edit event occurs. In about 30% of sessions, the edit

lag is over 30 min. In these sessions, we believe the developers may be engaged in

debugging activities which require a longer investment of attention before a first edit can

be made.

In Table 4, we show a breakdown of the frequency and duration of sessions in a typical

day.

Overall, this evidence indicates that significant interruptions do occur and that signifi-

cant time is required for effective resumption.

E

EPM
minutes

Fig. 2 Edit lag (E). When starting a new programming session, a latency can be typically observed before
coding activity (edits to code) begins. We believe activities during this time period are used to prepare for
the coding activity. Typically, once coding activity has been initiated, it strongly persists for the rest of the
session (see graph line)

Edit Lag Distribution

0%

5%

10%

15%

20%

25%

1 5 10 15 30 45 60 120 360

Minutes

S
es

si
o

n
s

Fig. 3 Developers often do not
make their first edit of the session
until at least several minutes have
past

Software Qual J (2011) 19:5–34 19

123

5.1 Return to last method edited

One of the simplest methods for resuming a programming task is to return to the site where

work was last performed. But how sufficient and frequently is this tactic applicable for

resuming work?

To measure how often programmers successfully perform this tactic, we make several

measurements. First, we measure how often the first change is made without navigating to

other methods or classes. Second, we measure how often the first change is eventually

made in the last edited method even with intervening navigations to other methods or

classes. Finally, we measure the edit lag for both cases. Only the Visual Studio data set had

sufficient information about navigation for this analysis.

Our analysis finds that in 91 of 1,213 sessions (7.5%) the programmers were able to

make changes without navigating to other methods. Second, in 209 out of 1,213 sessions

(17%), the programmers do eventually return from visiting other locations and make

changes to the last method edited. Otherwise, in the majority of sessions, the programmers

navigated to other methods or classes to resume work. The results of the edit lag can be

seen in Table 5. When the programmers do continue work in the same method, they can

often resume work quickly. When resuming coding in the last method, the programmer

does this within 1 min 35% of the time. We believe in these situations, the programmer can

successfully use the method itself to remember sufficient details for completing the task.

In other cases, the programmer may be spending time re-understanding the code or

re-evaluating his or her implementation plan.

One explanation for the results is that programmers may prefer to stop working at a

natural task boundary and therefore not need to complete work in that method upon

resuming the task. The last completed task may serve as a convenient cue for remembering

which next logical task to perform. Further investigation is needed to understand why

programmers may spend more than a few minutes resuming work even when the work is in

the same location. An experiment comparing the complexity of the source code with edit

lag would confirm the hypothesis that developers need time to re-comprehend complex

code when completing a task involving that code.

Table 4 The frequency of sessions of various durations is shown

Sessions in a typical day

Sessions 1–3 1–2 1–2 1 0–1 Rarely

Duration 15 m 30 m 1 h 2 h 4 h 8 h

In a typical day, developers program in several short sessions with an additional one or two longer sessions.
That is, in a normal day a developer might have three 15 min sessions, two 30 min sessions, a 1 h session,
and another two hour session

Table 5 Developers are able to resume coding within 1 min for 35% of sessions and within 30 min for
most sessions when the work involves completing the last edited method

Resumption cost

Sessions (%) 35 22 23 12

Edit lag (m) 1\ 1–5 5–15 15–30

20 Software Qual J (2011) 19:5–34

123

5.2 Navigate to remember

In the previous subsection, we observed that in 118 of the 209 (56%) sessions (where the

programmer made changes to the last method edited) the programmer still navigated to

other locations first. Navigating to other locations is a natural tactic to use if the pro-

grammer needs to recall details from other parts of the code before making a change. But

how many places do programmers need to visit, and what is the cost of performing all these

navigations before a change can finally be started?

Because of differences in the two data sets, we separate the analyses and use two

different metrics. With the Visual Studio data set, to measure the number of places visited,

we record the set of all methods or classes visited before making the change. We then

measure the navigational cost as determined by the distance between code elements. For

the Eclipse data set, we measure the number of selection events prior to the edit.

The results can be seen in Table 6. In general, the developers navigated within the code

to several locations before being able to begin coding. The developers also took consid-

erably longer to start coding when navigation was involved. As shown in Table 7, sessions

with navigations to other locations (in the Visual Studio data set) have higher edit lag when

compared to results in the previous section (Table 5).

5.3 Execute the program

Debugging is an expensive but comprehensive way of obtaining knowledge about the

program behavior. We suspect developers may be using debugging or program execution

to measure progress or recover forgotten subgoals.

To measure the frequency of use of this strategy, we examined commands used in the

Eclipse data set related to launching a debugging session or execution of the program. We

do not know if these commands are being used intentionally as a resumption strategy; it

may be possible that the programmer is continuing debugging the program from the last

session.

In Table 8, we display the use of both the debug and run commands. Programmers

execute the program prior to making edits through the run command 2% of the time and

through the debug command 13% of the time. The higher rate of the debug command could

Table 6 Developers typically visit several locations of code before beginning a change

Visual Studio Eclipse

Locations 2–12 (7)

Navigation distance 4–40 (27)

Selection events 15–150 (135)

The range of elements covering 75% of values is shown with the mean in parenthesis

Table 7 Developers take a little longer to start coding when the work involves navigating to other locations
first

Resumption cost

Sessions (%) 16 25 22 18 8

Edit lag (m) 1\ 1–5 5–15 15–30 30–45

In contrast with Table 5, fewer sessions are quickly resumed (35% vs. 16%)

Software Qual J (2011) 19:5–34 21

123

suggest many of these sessions were continuations of previous debugging sessions.

Another explanation could be that running the program through the debug command would

provide advantages such as breaking on exception or retrospectively setting a breakpoint.

Also of interest is the frequency of program execution: 59% of sessions involve some form

of program execution. Even if program execution is not a resumption strategy, it is cer-

tainly a common strategy for evaluating the progress and correctness of a task.

From our survey results (see Table 9), participants indicated that they use program

execution for a variety of reasons when resuming a task. When participants were asked if

they run a program and then examine its output or UI, they responded positively 33% of

the time. However, a large number of users indicated they never use this strategy or are not

aware they are consciously doing it.

Participants described two ways they used program execution. One participant noted

how he used program execution to assist in restoring his representation of the program:

Sometimes I need to put in breakpoints and execute the application to recall the

algorithm.

Another common strategy was to use program execution to check for problems when

resuming work:

Run unit testing lets me know what has passed and what has not.

5.4 Search for prospective notes

When a programmer leaves behind roadblock cues or prospective notes in the code, he can

use these reminders to resume work. In this section, we are measuring how often pro-

grammers may leave behind these types of reminders.

To measure the use of roadblock cue reminders, we examine the Eclipse data set to

measure usage of the Problem View, a view that lists current warnings or compile errors

associated with the program. Compile errors may serve as a good source of reminders, but

we do not know if these are being intentionally left unresolved as a cue or simply that they

could not be fixed during the previous session. We could not directly measure the use of

prospective notes in the code through our interaction histories data sets, but have results

from our survey.

The results show that the Problem View was used in 9% of sessions (see Table 10). From

our survey results, many participants described the use of intentional compile errors placed

in their open responses. When asked how frequently they would use compile or build errors

(when available), participants estimated using this strategy in 43% of resumptions.

Table 8 Frequency of program-
mers debugging or running the
program before making their first
edit

Pre-edit lag Post-edit lag % Sessions

Debug 521 1,666 13

Run 84 693 2

Total 605 2,359 15

Table 9 Participants reported their frequency of program execution for resumption

Frequency 5% 25% 50% 75% 95% Weighted average (%)

Participants 126 89 68 48 22 33

22 Software Qual J (2011) 19:5–34

123

Several participants described how they used compile errors. When first resuming, often

participants would build the program to check for compile errors, almost compulsively.

One used compile errors as a way of making prospective notes more visible:

Add notations to the current code file of what needs to be done, but don’t add the

comment tag ’//’ so these comments will force a compile error.

Another noted how roadblock cues could be more prominent than environmental cues:

If I literally have to drop something, I’ll make sure that it has a compiler error and

put comments to help me remember what I was doing and what I planned to do next.

The compiler error prevents me from forgetting to finish. I almost never rely on

Visual studio being open or in the same state as when I left—I’ve been burned by

that strategy often enough.

5.5 Review task descriptions and notes

Programmers actively manage and perform many tasks when developing software. Some

tasks may be simple, such as fixing a compile error, or as complex as implementing a

complete system module. When resuming an incomplete programming task, developers

may need to recall details of the task and related subtasks. In this subsection, we are

measuring the activity related to viewing details about tasks stored in a task repository. In

addition, we also examine how developers use task tracking software to understand how

willingly developers are tracking subtasks or small tasks with task software.

To measure the use of task information, we examined commands used in the Eclipse
data set related to accessing a bug repository such as Bugzilla, the Mylyn Task List, and the

Eclipse Task List.

To measure the use of task tracking for management of subtasks, we examined the UDC
dataset and Eclipse dataset. The UDC dataset includes commands recorded from users

using Mylyn to track software tasks. We count the number of users that use Mylyn

commands related to creating new subtasks and compare that to the number of users using

other common task management commands. This gives an estimation of the developer

population likely to use task software for small tasks.

The results for viewing task details are shown in Table 11. Developers viewed task

information in 9% of sessions. However, the associated edit lag was also very high. For

75% of the sessions that viewed task information, the edit lag was greater than 30 min.

This suggests the start of these sessions might have been spent exploring and investigating

the source code in order to formulate a change plan.

Table 10 Viewing problems left over from the last session is common

Pre-edit lag Post-edit lag % Sessions

Problem view 301 265 9

Table 11 Viewing the task list or bug list during the beginning of a session is common

Pre-edit lag Post-edit lag % Sessions

Tasklist 274 246 9

Software Qual J (2011) 19:5–34 23

123

In Table 12, the results display how many users recorded subtasks in Mylyn and

compares this to other task operations available in Mylyn. A more detailed breakdown of

the four operations in Mylyn is the following:

• list the tasks in an external task repository,

• open a task from the task repository,

• create a new task that was not be stored in the task repository, and

• create a subtask of an existing task.

The table also shows the number of users that have used the command in the two most

recent months of activity. Mylyn is a popular tool for viewing assigned tasks, but unfor-

tunately the number of users using Mylyn for managing personal tasks (or willing to use

the tool to enter new tasks or sub tasks) is several magnitudes less than for managing

assigned tasks.

From our survey results, 77% of participants responded that they actively track the

status of tasks with note-taking. In their open responses, the participants described where

and what items they tracked using note-taking. Taking personal notes about tasks was often

necessary because the originally assigned task was often vague or required many

unspecified subtasks to accomplish. The participants consistently reported using a mix of

media to record notes, including the bug tracking system (TFS or Product Studio), the note-

taking product Microsoft OneNote, the source code itself, as well as traditional paper

media. The choice of media often reflects whether the task is long-term and/or shared. One

participant describes how he used different media for the tasks.

Product Studio at a large scale, then TodoList…for longer-term checklists, the

physical whiteboard for shorter term checklists and sometimes NotePad for very

temporary stuff.

Another participant described what items he tracked about a task:

I note down the big chunks of the task that needs to be done and also a list of corner cases

that needs to be handled. While doing [so] I keep striking out the subtasks that have been

completed. Main purpose of this exercise is to ascertain that the task is complete.

5.6 Review source code change history

Source code repositories hold a vast amount of information about the history of a project.

Some questions might have to be answered by accessing the revision history before

resuming a task.

To measure the frequency of using this strategy, we count the number of sessions that

have CVS or SubVersion history commands during the edit lag. To obtain the activity

Table 12 Tasking software is
popular for reviewing assigned
tasks but not for recording
low-level tasks

Commands Users

10/2008 11/2008

View task list 10,311 11,206

Open task 861 953

New local task 101 101

New sub task 11 22

24 Software Qual J (2011) 19:5–34

123

related to history, we separate the actions concerned with retrieving information from the

managerial repository commands. We were primarily concerned with comparing revisions,

viewing the history of a revision, viewing the commit log, and viewing a revision anno-

tation. We also measure the occurrence of commands in the rest of the session to gain

insight into the significance of the command occurring during the edit lag. Finally, we are

only able to measure the Eclipse data set for revision history usage.

The results can be seen in Table 13. From this measurement, we observe only occa-

sional use of revision history during the edit lag (only 4% of sessions). However, relative to

commit commands, the history commands are used fairly frequently, and are as likely to be

used during the edit lag as during normal coding activity. Finally, edit lags were higher

than 15 min for 59% of sessions when using revision history commands.

From our survey results (see Table 14), participants indicated they view a source dif-

ference 39% of the time. One motivation for checking differences is to resolve potential

conflicts that may have occurred since the interruption. This may explain one reason why

the edit lag can be high:

A part of the source codes may have changed since the interruption, so I need to

sync/resolve the difference.

Another reason for using a code difference was to obtain an overview of the changes:

use windiff if needed to quickly understand where i was with my code changes (if i

am in the middle of implementing some feature).

The measures we have collected may be conservative. Not all users always use the

Eclipse plugins for accessing revision history. Future studies should expand the instru-

mentation collection to directly measure access to source control.

6 Discussion

Several analyses were described in Sect. 5. In Table 15, a summary is given of the fre-

quency of various activities developers performed when starting a programming session.

Reviewing results from the survey and interaction history logs give us different insights;

however, it is interesting to note that both sources agree in the order of frequency among

the resumption strategies. The survey results for strategies frequency may give the

impression of small differences between strategy usage. This is mainly an artifact of

reporting the weighted mean of very different responses from individuals (e.g., 200 people

using strategy A with 50% frequency would yield the same mean as 100 people using

Table 13 Viewing history dur-
ing the edit lag is as common as
during the rest of the program-
ming session

Pre-edit lag Post-edit lag % Sessions

History 142 183 4

Commit 193 390 11

Table 14 Participants reported their frequency of using source differences as a resumption strategy

Frequency 5% 25% 50% 75% 95% Weighted average (%)

Participants 79 104 68 57 39 39

Software Qual J (2011) 19:5–34 25

123

strategy B with 25% frequency and another 100 people using strategy B with 75% fre-

quency); however, examining the underlying distributions show they are significantly

different (p \0.05) by a Kolmogorov-Smirnov test for every distribution except between

View Problem List and View Task List.

From our survey results, we found participants using many coping mechanisms to

recover from interruptions. Although these tools were not specifically built for interruption

management, participants have devised several strategies in attempts to recover their task

knowledge. One participant describes using several of the strategies we have investigated:

Review any notes from when task was interrupted, discuss status with other team-

mates, view code differences, search code for previous TODO’s, run build and test

scripts and analyze output.

Finally, participants often described how they would select strategies based on how

much task knowledge needs to be recovered. One participant described this process as the

following:

I tend to look at where I stopped and then, if need be, I will look over what I have

done so far (using something like a differencing tool). If that isn’t enough, then it’s

normally a task on which I would have at least jotted myself down some notes so I

will read over those and then resume.

How do the presented results affect future research and tools? In the following, we

review our findings and provide hypotheses that might explain the observed behavior and

implications for future tool research. Finally, researchers should be able to experimentally

apply these latency measures when studying their proposed tools.

6.1 Edit and navigation behavior

Considerable doubt was placed on the sufficiency of using the last edit as an environmental

cue. When the cue was applicable, it was very effective: 35% of these sessions were resumed

inless than a minute, which is much higher than the 10% of sessions overall that could be

resumed in less than a minute. However, this situation was only applicable in 17% of the

sessions and still required navigation to other locations. In other cases, developers had con-

siderable edit lag even when continuing edits at the same location. It is likely that in these

situations, the code or task was complex. This suggests there are opportunities for researchers to

investigate how additional code representations or visualizations might eliminate this latency.

Table 15 Developers perform
various activities at the beginning
of a session

Strategies Usage (%) Survey (%)

Note-taking (suspension) 77

Continue last edit 7.5

Nav then continue last edit 17

Navigate to new location 83

Navigate to remember 58

View problem list 9 43

View task or bug list 9 42

View revision history 4 39

Execute/debug program 2/15 33

26 Software Qual J (2011) 19:5–34

123

If programmers use the last site of completed work as a launching point, then there are

some interesting implications. Several researchers have reported differences in recall

ability in completed tasks versus incomplete tasks (Zeigarnik 1927; McKinney 1935). It is

unknown how much contextual detail programmers lose after task completion. There is

some evidence that gives direction. In Bailey’s study (Adamczyk and Bailey 2004), the

task-evoked pupillary response was recorded over time (the pupil size dilates during

moments of increased memory access and mental load) while users performed tasks. In the

study, immediately after subtask completion, pupillary response would return to baseline

levels. This suggests that memory access ceases after task completion and may effect the

retention of task-related information that was in short-term memory.

Finally, developers are spending a considerable amount of time navigating to several

locations in code before beginning coding. Ideally, a developer should be able to resume

working without having to spend several minutes of every session re-orienting himself.

Future research should continue to evaluate alternative navigation interfaces such as

CodeThumbnails (DeLine et al. 2006); Relo (Sinha et al. 2006); and SHriMP (Storey et al.

2002) and their affect on resumption costs.

6.2 Other sources of task knowledge

We also reviewed several possible sources of information that may be relevant in resuming

a programming task. First, when developers refer to task or compile errors at the beginning

of a session, the time to begin coding was much longer than in any other sessions. The

extra latency needs to be further investigated. Second, a formal representation of task

structure including all relevant subtasks could be an important help in reducing the cost of

task switching and interruptions management. Many research tools rely on the assumption

that developers will participate in detailing tasking information. However, few users

actively use available facilities for recording subtasks or small tasks. Instead, they use

simple handwritten notes for recording task breakdowns. The issues that developers have

with these tools must be discovered and addressed before such approaches becomes

popular. Other interfaces for recording information may alleviate this problem: Developers

may be receptive to simpler input mechanism that allows hand-written and whiteboard-like

task sketching.

Developers actively refer to revision history information but are slower to resume

coding when they do. Research needs to elaborate on the motivations and requirements

for viewing revision history when resuming a task. One possible explanation is that

developers need to review the status of other teammates’ activities to see if it impacts

their tasks. This would be consistent with other research: Status awareness was one of the

top information needs found in Ko’s study (Ko et al. 2007) of developers. Developers

may also be using facilities such as a code differencing tool to remind themselves of what

changes were made during their last session. Surprisingly, this process is still manual and

this could explain the low use in comparison to other strategies. Participants noted using

program execution for checking correctness and refreshing mental representations;

however the expense in setting up the debugging environment may explain the infre-

quency of this strategy. Future enhancement to IDEs may include the ability to auto-

matically summarize and highlight code differences between programming sessions. This

may provide additional cues for programmers to trigger reminders on any incomplete

tasks or unresolved bugs.

Software Qual J (2011) 19:5–34 27

123

6.3 Toward supporting task resumption

Having seen the variety of activities developers perform at the beginning of a pro-

gramming session, we attempt to identify how better tool support can be constructed

for suspending and resuming programming tasks. Developers are devoting a significant

amount of time to collecting task knowledge and planning how to perform a pro-

gramming task during the start of a session. When resuming a programming task,

developers have a spectrum of resumption strategies available. The selection of these

strategies will largely depend on the manner in which the developer was interrupted

and the current state of the programming task. However, the variety of suspended task

states and types of knowledge programmers need to recall will pose many challenges to

developing tool support.

With involuntary interruptions, developers have limited time to properly suspend the

programming task and as a result will most likely select strategies that will prompt recall

by using implicit cues. Unfortunately, the sources of implicit cues are limited in current

IDE systems. Because there are no explicit representations of plans, goals, or intermediate

knowledge used during a task, developers rely on ad-hoc strategies to trigger and activate

those memories. A likely reason why these strategies fail is caused by insufficient cues

contained at the last site of work.

To gain more insight into future research efforts, we surveyed developers about what

features they would like in future tool development. The first set of features they described

were several approaches for enhancing retrospective measures by enhancing environmental

cues and providing different views of the source code:

• Automatic Tags: A tag cloud of links to recent source code symbols and names inside

method bodies.

• Change Summary: Short summary of my changes.

• Code Thumbnails: Thumbnails of recent places I navigated or edited.

• Instant Diff.: Highlighted code showing how I changed a method body as well as

providing a global view.

• Activity Explorer: Historical list of actions such as search, navigating, refactoring.

Expanding item gives thumbnail of IDE action or code location.

• Snapshots/Instant Replay: Timeline of screen-shot thumbnails or an instant replay of

my past work.

Continuing from the last state of the programming task can happen in a variety of ways:

The developer might resume coding in the previous location, might need to transition to the

next step of the task, or might need to evaluate the progress of the task. The complex nature

of programming requires developers to concentrate on a fixed set of artifacts in the context

of a task. Developers linearize tasks so that upon completing a subtask, they are aware of

what the next subtask will be. In effect, developers maintain a rolling window of focus.

Unfortunately, an interruption can severely derail this process due to the memory strategies

used in this process. The diverging needs of different task states suggest that there are

opportunities for devising notations for expressing the steps, objectives, and stages of a

programming task. An IDE can formally support task stages by including perspectives for

different task stages or introduce light-weight mechanisms for annotating programming

artifacts. A list of some measures that can support task state include:

• Task Sketches: Light-weight annotations of a task breakdown: steps, objectives, and

plans.

28 Software Qual J (2011) 19:5–34

123

• Runtime Information: Values or visualizations of variables or expressions from

previous execution or debugging session(s).

• Prospective Cues: Contextual reminders that are displayed when a condition is true.

The developers’ ratings in Table 16 are notably consistent in what help they want when

resuming tasks. In general, they favor tool support for retrospective measures versus

prospective measures. This may be because they are already happy with the note-taking

approaches they use or still think these features may be too heavy-weight. One participant

noted:

Task sketches—most task list ‘‘helpers’’ are more harm than help. I rated it a 2 for

that reason. If you somehow made it awesome, then perhaps I’d use it more.

The top four choices show that they want to see a summary of the content that they

edited or inspected before the interruption, whether it is shown integrated in the code

(Instant Diff.), in a separate window (Change Summary), on thumbnail versions of the

code (Code Thumbnails), or in a history view (Activity Explorer). On participant noted that

what is really missing from current tools was the ability to recover fine-grained changes

rather than a flat summary that a code difference presents:

I use sd/sdv/windiff/windiffredirector/Beyond compare/related tools frequently

already. The main drawback is that I don’t have a good time guess on each of those

changes… However, the ultimate way to improve the existing tools would be to add

the time component.

Finally, one participant was enthusiastic to have any resumption support:

All of the above would be absolutely amazing, PLEASE MAKE THIS. If I had to

rank them, I’d say the top of my list would be Runtime Information (notably previous

Debug values), Task Sketch, Instant Diff., Code Thumbnails. Prospective Cues might

be ok, depending entirely on what conditions are defined.

6.4 Limitations of analysis

We have presented an analysis of developers’ activity before coding and discussed several

observations and hypotheses explaining their behavior. The nature of the datasets we have

analyzed gives us a good overview of behavior but understandably several unknown

factors might be at play.

Table 16 Average ratings of
possible resumption features,
on a 5-point Likert scale

Ratings for features 1 2 3 4 5 Avg.

Automatic Tags 83 68 75 84 39 2.8

Change Summary 28 46 95 127 60 3.4

Code Thumbnails 41 63 84 112 53 3.2

Instant Diff. 20 24 63 125 122 3.9

Activity Explorer 45 75 89 104 41 3.1

Snapshots/Instant Replay 67 76 75 74 60 3.0

Task Sketches 69 77 83 83 41 2.9

Runtime Information 54 75 97 84 44 2.8

Prospective Cues 67 85 118 55 23 2.7

Software Qual J (2011) 19:5–34 29

123

One main threat to the validity of this analysis is that the period of edit lag does not

necessarily distinguish the time related to resuming a task from that of thinking about a

new task. In a controlled study, a researcher would be able to control for whether a

programmer was resuming an incomplete task or starting a new task. In this study, we can

use the structure of activity to infer properties about task resumption, but ultimately the

effects may be confounded. In the worst case, the experimental values found in this study

serve as an upper bound. Future studies need a stronger method of separating this effect by

accounting for which task(s) comprise a session. Possible methods include relating sessions

to source code check-ins and to task repository activity.

Similarly, for the activities detected; such as task tracking usage, there is no direct

causal relationship between starting a session and observing an activity. Again, the

experimental results establish an upper bound on the activity corresponding with resuming

a programming task and set the basis for future confirmatory studies.

Differences both across and within datasets threaten the generality of these results. For

example, the Visual Studio dataset has finer granularity of navigation events and more

detail on code entities; whereas the Eclipse dataset has more detail on IDE events. These

differences across the datasets limit our ability to analyze our questions throughly (i.e.,

Visual Studio dataset was applicable for Sects. 5.1, 5.2). Within a dataset, differences

between users such as experience and differences between tasks such as investigation or

refactoring all influence factors surrounding resumption beyond our control. As such, any

attempt to draw general assertions on the impact of interruption from these results (i.e.,

resumption time) should be avoided. Instead, we recommend researchers use these results

as a baseline and guideline for future study.

Finally, the interaction history data does not capture a complete representation of all

possible activities that were performed. We cannot account for productive time away from

the keyboard that may have helped resume a task. Also, developers may be using other

sources of reminder cues such as notes on their desk or comments in source code. Although

we have corroborated this evidence with results from our survey study, other types of

studies would need to be performed to measure the frequency and effectiveness of these

techniques.

6.5 Future work

We are investigating several directions for expanding this research. We will perform

experiments to better answer some of the questions raised in this study. What information

are developers seeking (or what did they forget) when resuming a programming task?

What are effective cues for resuming tasks: For example, would highlighting code dif-

ferences of changes made during the last session better prompt developers’ memories?

The analysis of session data can be expanded in several ways. An interesting aspect of

the session data to investigate is the time after the last edit in the session (interruption lag).

The interruption lag may include activities related to preparing the workspace to facilitate

resumption. Another possible analysis includes examining the relationships between

groups of sessions. For example, in reviewing visualizations of developer sessions, we

observed a pattern of ‘‘dabbling sessions’’ early in the day where developers would nav-

igate for a few minutes but make no changes. Presumingly, after ‘‘warming up’’ for an hour

or two, the developer has a long productive session. Another trend we observed that

productive days containing many long sessions were followed by several days of low

productivity (a few small sessions). There may be the effects of mental fatigue and

workload regulating the nature of sessions.

30 Software Qual J (2011) 19:5–34

123

7 Conclusions

In this paper, we theorize on suspension and resumption strategies that programmers use to

resume work. We have presented an analysis of three sets of data that provides new insight

into how programmers resume a programming task-particularly characterizing what activi-

ties are performed at the beginning of a resumed session. We conduct a survey to gain insights

into why these activities are performed and how might future tools better support this process.

Some interesting results have emerged from these data. In only a small percentage of

sessions did developers resume coding in less than a minute. Developers consistently spend

a significant portion of their time doing non-editing activities before making their first edit

in a session. During this time period, developers are performing a variety of activities that

relate to rebuilding their task context.

However, there is still much work to be done. The psychology and environmental

factors related to interruptions remains a complex topic. Understanding this topic has broad

impact on the everyday activities of developers. Future research should investigate why
developers must visit several locations of code before coding and consider ways to rethink

how an IDE organizes content beyond tabbed editing and hierarchical lists.

References

Adamczyk, P. D., & Bailey, B. P. (2004). If not now, when? The effects of interruption at different moments
within task execution. In CHI ’04: Proceedings of the SIGCHI conference on human factors in
computing systems (pp. 271–278). New York, NY: ACM.

Allwood, C. (1984). Error detection processes in statistical problem solving. Cognitive Science, 8(4),
413–437.

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation-based model. Cognitive Science,
26, 39–83.

Altmann, E. M., & Trafton, J. G. (2004). Task interruption: Resumption lag and the role of cues. In
Proceedings of the 26th annual conference of the cognitive science society.

Altmann, E. M., & Trafton, J. G. (2007). Timecourse of recovery from task interruption: Data and a model.
Psychonomic Bulletin and Review, 14, 1079–1084.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory
of the mind. Psychological Review, 111, 1036–1060.

Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning to program in lisp. Cognitive Science, 8(2),
87–129.

Atkinson, R. C., & Shiffrin. (1968). The psychology of learning and motivation (Vol. 2), chapter Human
memory: A proposed system and its control processes (pp. 89–195). Baddeley: Academic Press.

Baddeley, A., & Hitch, G. (1974). The psychology of learning and motivation: Advances in research and
theory, chapter working memory (pp. 47–89). New York: Academic Press.

Bannon, L., Cypher, A., Greenspan, S., & Monty, M. L. (1983). Evaluation and analysis of users’ activity
organization. In CHI ’83: Proceedings of the SIGCHI conference on human factors in computing
systems (pp. 54–57). New York, NY: ACM.

Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D. G., & Ducheneaut, N. (2004). What a to-do: Studies
of task management towards the design of a personal task list manager. In CHI ’04: Proceedings of the
SIGCHI conference on human factors in computing systems (pp. 735–742). New York, NY: ACM.

Borst, J. P., & Taatgen, N. A. (2007). The costs of multitasking in threaded cognition. In ICCM ’07:
Proceedings of the 8th international conference on cognitive modeling (pp. 133–138). Oxford: Psy-
chology Press.

Brush, A. B., Meyers, B. R., Tan, D. S., & Czerwinski M. (2007). Understanding memory triggers for task
tracking. In CHI ’07: Proceedings of the SIGCHI conference on human factors in computing systems
(pp. 947–950). New York, NY: ACM.

Chase, W., & Simon, H. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.
Chase, W. G., & Ericsson, K. A. (1982). The psychology of learning and motivation, Vol. 16, chapter Skill

and working memory (pp. 1–58). New York: Academic Press.

Software Qual J (2011) 19:5–34 31

123

Cherubini, M., Venolia, G., DeLine, R., & Ko, A. J. (2007). Let’s go to the whiteboard: How and why
software developers use drawings. In CHI ’07: Proceedings of the SIGCHI conference on human
factors in computing systems (pp. 557–566). New York, NY: ACM.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage
capacity. The Behavioral and brain sciences, 24(1), 87-185.

Cutrell, E., Czerwinski, M., & Horvitz, E. (2001). Notification, disruption and memory: Effects of mes-
saging interruptions on memory and performance.

Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A diary study of task switching and interruptions. In CHI
’04: Proceedings of the SIGCHI conference on human factors in computing systems (pp 175–182).
New York, NY: ACM Press.

Dekel, U. (2008). Designing a prosthetic memory to support software developers. In ICSE companion ’08:
Companion of the 30th international conference on software engineering (pp. 1011–1014). New York,
NY: ACM.

DeLine, R., Czerwinski, M., Meyers, B., Venolia, G., Drucker, S., & Robertson, G. (2006). Code thumb-
nails: Using spatial memory to navigate source code. In VLHCC ’06: Proceedings of the visual
languages and human-centric computing (pp. 11–18). Washington, DC: IEEE Computer Society.

Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.
Ericsson, K. A., & Staszewski, J. J. (1989). Complex information processing: The impact of Herbert A.

Simon, chapter Skilled memory and expertise: Mechanisms of exceptional performance (pp. 235–267).
Hillsdale, NJ: Lawrence Erlbaum.

Fogarty, J., Ko, A. J., Aung, H. H., Golden, E., Tang, K. P., & Hudson, S. E. (2005). Examining task
engagement in sensor-based statistical models of human interruptibility. In CHI ’05: Proceedings of
the SIGCHI conference on human factors in computing systems (pp. 331–340). New York, NY: ACM.

Gilboa, A., et al. (2006). Hippocampal contributions to recollection in retrograde and anterograde amnesia.
Hippocampus, 16(11), 966–980.

Gillie, T., & Broadbent, D. (1998). What makes interruptions disruptive? a study of length, similiarity, and
complexity. Psychological Research, 50, 243–250.

Hodgetts, H. M., & Jones, D. M. (2006). Contextual cues aid recovery from interruption: The role of
associative activitation. Journal of Experimental Psychology: Learning, Memory, and Cognition,
32(5), 1120–1132.

Iqbal, S. T., & Bailey, B. P. (2005). Investigating the effectiveness of mental workload as a predictor of
opportune moments for interruption. In CHI ’05: CHI ’05 extended abstracts on human factors in
computing systems (pp. 1489–1492). New York, NY: ACM.

Kersten, M., & Murphy, G. C. (2006). Using task context to improve programmer productivity. In SIGSOFT
’06/FSE-14: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of
software engineering (pp. 1–11). New York, NY: ACM.

Ko, A. J., Aung, H., & Myers, B. A. (2005). Eliciting design requirements for maintenance-oriented ides: A
detailed study of corrective and perfective maintenance tasks. In ICSE ’05: Proceedings of the 27th
international conference on software engineering (pp. 126–135). New York, NY: ACM.

Ko, A. J., DeLine, R., & Venolia, G. (2007). Information needs in collocated software development teams.
In ICSE ’07: Proceedings of the 29th international conference on software engineering (pp. 344–353).
Washington, DC: IEEE Computer Society.

Latoza, T. D., Venolia, G., & Deline R. (2006). Maintaining mental models: A study of developer work
habits. In ICSE ’06: Proceeding of the 28th international conference on software engineering (pp.
492–501). New York, NY: ACM Press.

Lethbridge, T. C., Sim, S. E., & Singer, J. (2005). Studying software engineers: Data collection techniques
for software field studies. Empirical Software Engineering, 10(3):311–341.

Mark, G., Gonzalez, V. M., & Harris J. (2005). No task left behind? Examining the nature of fragmented
work. In CHI ’05: Proceedings of the SIGCHI conference on human factors in computing systems (pp.
321–330). New York, NY: ACM Press.

Mayrhauser, A. V., & Vans, A. M. (1997). Hypothesis-driven understanding processes during corrective
maintenance of large scale software. In ICSM ’97: Proceedings of the international conference on
software maintenance (pp. 12–20). Washington, DC: IEEE Computer Society.

McFarlane, D. (2002). Comparison of four primary methods for coordinating the interruption of people in
human-computer interaction. Human-Computer Interaction, 17(1), 63–139.

McKinney, F. (1935). Studies in the retention of interrupted learning activities. Journal of Comparative
Psychology, 19(2), 265–296.

Miller, G. A. (1994). The magical number seven, plus or minus two: Some limits on our capacity for
processing information. 1956. Psychological Review, 101(2), 343–352.

32 Software Qual J (2011) 19:5–34

123

Milner, B., Corsi, P., & Leonard, G. (1991). Frontal-lobe contribution to recency judgements. Neuro-
psychologia, 29(6), 601–618.

Miyata, Y., & Norman, D. A. (1986). Psychological issues in support of multiple activities. In D. A. Norman
& S. W. Draper, (Eds.), User centered system design: New perspectives on human-computer inter-
action (pp. 265–284). Hillsdale, NJ: Erlbaum.

Monk, C., Trafton, J., & Boehm-Davis, D. A. (2008). The effect of interruption duration and demand on
resuming suspended goals. Journal of Experimental Psychology: Applied, 14, 299–313.

Monk, C. A. (2004). The efffect of frequent versus infrequent interruptions on primary task resumption. In
Proceedings of the human factors and ergonomics society 48th annual meeting.

Morris, R. G., & Frey, U. (1997). Hippocampal synaptic plasticity: Role in spatial learning or the automatic
recording of attended experience? Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences, 352(1360), 1489–1503.

Morris, R. G. M. (2006). Elements of a neurobiological theory of hippocampal function: The role of synaptic
plasticity, synaptic tagging and schemas. European Journal of Neuroscience, 23(11), 2829–2846.

Murphy, G. C., Kersten, M., & Findlater, L. (2006). How are Java software developers using the Eclipse
IDE? (vol. 23, pp. 76–83). Los Alamitos, CA: IEEE Comp. Soc. Press.

O’Brien, M. P., & Buckley, J. (2005). Modelling the information-seeking behaviour of programmers—an
empirical approach. In IWPC ’05: Proceedings of the 13th international workshop on program
comprehension (pp. 125–134). Washington, DC: IEEE Computer Society.

O’Conaill, B., & Frohlich, D. (1995). Timespace in the workplace: Dealing with interruptions. In CHI ’95:
Conference companion on human factors in computing systems (pp. 262–263). New York, NY: ACM Press.

Offner, M. (1911). Mental Fatigue. Warwick & York.
Parnin, C., & DeLine, R. (2010). Evaluating cues for resuming interrupted programming tasks. In CHI ’10:

Proceedings of the 28th international conference on human factors in computing systems (pp. 93–102).
New York, NY: ACM.

Parnin, C., Görg, C. (2006). Building usage contexts during program comprehension. In ICPC ’06: Pro-
ceedings of the 14th IEEE international conference on program comprehension (pp. 13–22).

Pennington, N., & Grabowski, B. (1990). The tasks of programming. In Psychology of programming,
Computer and People Series, chapter 1.4 (pp. 45–62). London: Academic Press Ltd.

Ratwani, R. M., & Trafton J. G. (2008). Spatial memory guides task resumption. Visual Cognition, 16,
1001–1010.

Renaud, K., & Gray, P. (2004). Making sense of low-level usage data to understand user activities. In
Proceedings of SAICSIT ’04, (pp. 115–124). Republic of South Africa, 2004. South African Institute
for Computer Scientists and Information Technologists.

Robbes, R., & Lanza, M. (2007). Characterizing and understanding development sessions. In ICPC ’07:
Proceedings of the 15th IEEE international conference on program comprehension (pp. 155–166).
Washington, DC: IEEE Computer Society.

Safer, I., & Murphy, G. C. (2007). Comparing episodic and semantic interfaces for task boundary identi-
fication. In CASCON ’07: Proceedings of the 2007 conference of the center for advanced studies on
collaborative research (pp. 229–243). New York, NY: ACM.

Salvucci, D. D., Taatgen, N. A., & Borst, J. P. (2009). Toward a unified theory of the multitasking
continuum: From concurrent performance to task switching, interruption, and resumption. In CHI ’09:
Proceedings of the 27th international conference on human factors in computing systems
(pp. 1819–1828), New York, NY: ACM.

Singer, J., Elves, R., & Storey, M.-A. (2005). Navtracks: Supporting navigation in software maintenance.
In ICSM ’05: Proceedings of the 21st IEEE international conference on software maintenance
(pp. 325–334). Washington, DC: IEEE Computer Society.

Sinha, V., Karger, D., & Miller, R. (2006). Relo: Helping users manage context during interactive
exploratory visualization of large codebases. In VLHCC ’06: Proceedings of the visual languages and
human-centric computing (pp. 187–194). Washington, DC: IEEE Computer Society.

Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of
learning and memory, 82(3), 171–177.

Storey, M.-A., Best, C., Michaud, J., Rayside, D., Litoiu, M., & Musen, M. (2002). Shrimp views: An
interactive environment for information visualization and navigation. In CHI ’02: CHI ’02 extended
abstracts on human factors in computing systems (pp. 520–521), New York, NY: ACM.

Storey, M.-A., Ryall, J., Bull, R. I., Myers, D., & Singer, J. (2008). Todo or to bug: Exploring how task
annotations play a role in the work practices of software developers. In ICSE ’08: Proceedings of the
30th international conference on software engineering (pp. 251–260), New York, NY: ACM.

The Eclipse Foundation. (2009). Usage Data Collector Results. January 5th, 2009. Website,
http://www.eclipse.org/org/usagedata/reports/data/commands.cs.

Software Qual J (2011) 19:5–34 33

123

http://www.eclipse.org/org/usagedata/reports/data/commands.cs

Trafton, J. G., Altmann, E. M., & Brock, D. P. (2005). Huh, what was i doing? How people use environ-
mental cues after an interruption. In Proceedings of the human factors and ergonomics society 49th
annual meeting.

Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E. (2003). Preparing to resume an interrupted task:
Effects of prospective goal encoding and retrospective rehearsal. International Journal of Human-
Computer Studies, 58, 583–603.

Tulving. E. (1972). Organization of memory, chapter Episodic and semantic memory (pp. 381–403). New
York: Academic Press.

Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory.
Psychological Review, 80, 352–373.

van Solingen, R., Berghout, E., & van Latum, F. (1998). Interrupts: Just a minute never is. IEEE Software,
15(5), 97–103.

Winograd, E. (1988). Practical aspects of memory: Current research and issues, Vol. 2, chapter Some
observations on prospective remembering (pp. 348–353). Chichester: Wiley.

Zeigarnik, B. (1927). Das behalten erledigter und unerledigter handlungen. Psychologische Forschung, 9(1),
1–85.

Zijlstra, F. R. H., Roe, R. A., Leonova, A. B., & Krediet, I. (1999). Temporal factors in mental work: Effects
of interrupted activities. Journal of Occupational and Organizational Psychology, 72, 163–185.

Zou, L., & Godfrey, M. W. (2006). An industrial case study of program artifacts viewed during maintenance
tasks. In WCRE ’06: Proceedings of the 13th working conference on reverse engineering (pp. 71–82).
Washington, DC: IEEE Computer Society.

Author Biographies

Chris Parnin is a PhD student in the Department of Computer Science
at Georgia Tech. His research interests include human-computer
interaction and software tools.

Spencer Rugaber is a faculty member of the College of Computing at
the Georgia Institute of Technology. His research interests has con-
centrated on reverse engineering, software evolution, and user inter-
facess. In addition to his academic posts he also worked as an engineer
at Bell Labs and program director for NSF. He holds a PhD in Com-
puter Science from the Yale University.

34 Software Qual J (2011) 19:5–34

123

	Resumption strategies for interrupted programming tasks
	Abstract
	Introduction
	Background
	Interruptions and multitasking
	Resumption timeline
	Task knowledge
	Memory
	Environmental cues
	Interruption management strategies

	Resumption strategies
	Working state
	Suspension strategies
	Resumption
	Global restoration
	Goal restoration
	Plan restoration
	Context restoration
	Representation restoration

	Summary

	Datasets and measures
	Interaction history
	Survey
	Measures
	Edit lag

	Analysis
	Return to last method edited
	Navigate to remember
	Execute the program
	Search for prospective notes
	Review task descriptions and notes
	Review source code change history

	Discussion
	Edit and navigation behavior
	Other sources of task knowledge
	Toward supporting task resumption
	Limitations of analysis
	Future work

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

